• Title/Summary/Keyword: ionic conduction

Search Result 124, Processing Time 0.029 seconds

Preparation of a PVDF (Polyvinylidene Fluoride) Thin Film Grown by Using the Method of Electric Field Application (전계인가법을 이용한 PVDF 박막의 제작과 특성에 대한 연구)

  • 장동훈;강성준;윤영섭
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.76-79
    • /
    • 2000
  • The 3$\mu\textrm{m}$-thick PVDF (Polyvinyiidene fluoride) thin film have been prepared using physical vapor deposition with electric field, and its FT-IR specrum, dielectric property and electric conduction phenomenon have been investigated. Since the characteristic peaks ate detected at 509.45 and 1273.6〔cm〕 in the FT-IR spectrum, we are confirmed that the ${\beta}$ -phase is dominant in the PVDF thin film. In the results of dielectric properties, the PVDF thin film shows anomalous dispersion, i.e. gradual decrease of dielectric constant with increase of frequency, and also that the dielectric absorption point changes from 200Hz to 7000Hz with increasing temperature of thin film, which is consistent with the Debye's theory. The activation energy (ΔH) obtained from temperature dependence of dielectric loss is 21.64 ㎉/㏖. We confirm that the electric conduction mechanism of PVDF thin film is dominated by ionic conduction by investigating the dependence of the leakage current of the thin film on the temperature and the electric field.

  • PDF

Electrical Characteristics of Cu-Ion Conducting Glasses (구리 이온 전도체 유리의 전기적 특성)

  • Lee, J.H.;Lim, K.J.;Park, S.G.;Ryu, B.H.;Kim, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.12-15
    • /
    • 1993
  • The correlation between electrical conduction and dielectric relaxation properties of copper ion conducting glasses is discussed. The glasses were prepared in the system $CuI-Cu_2S-Cu_2O-MoO_3$ using rapid quenching technique. These glasses have high ionic conductivities at room temperature in the range of $10^{\circ}$[S/m], and the conductivities increase with increasing CuI content. The activation energies for conduction are 0.26 - 0.57 eV. The dielectric relaxation times are 1 - 10uS, and the activation energy for ion jumping are 0.18 - 0.41eV. It is shown that the tendency of conduction properties depending on composition of the glass is similar those of dilectric relaxation.

  • PDF

Developement of a PEFC electrodes under the high temperature and low humidified conditions (고온/저 가습 운전을 위한 고분자 전해질 연료전지용 전극 개발)

  • Ryu, Sung-Kwan;Choi, Young-Woo;Park, Jin-Soo;Yim, Sung-Dae;Yang, Tae-Hyun;Kim, Han-Sung;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.149-149
    • /
    • 2009
  • Generally, Nafion ionomer is used in the polymer electrolyte fuel cell (PEFC) electrodes to achieve high power density. At the high temperature operation of PEFC, however, ionic conductivity of Nafion remarkably decreased due to the evaporation of water in Nafion polymer. Recently, many researchers have focused on using the Ionic Liquids(ILs) instead of water in Nafion polymer. ILs have intrinsic properties such as good electrochemical stability, high ionic conductivity, and non-flammability. Especially, ILs play a crucial role in proton conduction by the Grottuss mechanism and act as water in water-free Nafion polymer. However, it was found that the ILs was leached out of the polymer matrix easily. In this study, we prepared membrane electrode assemblies with various contents of ILs. The effect of ILs in the electrode of each designed was investigated by a cyclic voltammetry measurement and the cell performance obtained through a single cell test using H2/Air gases. Electrodes with different contents of ILs in catalyst layer were examined at high temperature and low humidified condition.

  • PDF

A study on composite membranes based on hydrocarbon polymers and ionic liquids for high temperature PEFCs (고온 PEFCs를 위한 탄화수소계열 고분자와 이온성 액체를 함유하는 복합막에 관한 연구)

  • Baek, Ji-Suk;Park, Jin-Soo;Kim, Kyung-Hyun;Moon, Gi-Young;Kim, Hye-Kyung;Choi, Young-Woo;Park, Go-Gun;Yang, Tae-Hyun;Kim, Chang-Soo;Shul, Young-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.147-148
    • /
    • 2009
  • The water-like ionic liquids have been widely used to enable the proton conduction in ionic liquid based membranes at high temperature and anhydrous PEFCs. In this study, we synthesized various kinds of composite membranes based on hydrocarbon polymers having good thermal and mechanical stabilities at high temperatures and ionic liquids. The composite membrane consisting of hydrocarbon polymer and ionic liquid was characterized by thermogravimetric analyzer (TGA) and impedance spectroscopy. Consequently the non-aqueous composite membranes of a variety of hydrocarbon polymer and ionic liquids have good conductivity and thermal stability at high temperature conditions.

  • PDF

Preparation of NASIglasses by Sol-Gel Process (솔-젤법에 의한 NASIglass의 제조)

  • 김희주;강은태;김종옥
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1357-1368
    • /
    • 1995
  • Nasigels of composition Na0.75Zr2PSi2O12 and Na3Zr2PSi2O12 have been synthesized by the sol-gel technique using metal alkoxide precursors. The monolithic dry gels of Na0.75Zr2PSi2O12 with no crack have been prepared by the control of the shrinkage rte, but gels of Na3Zr2PSi2O12 were impossible to prepare without cracking. The gels treated up to 80$0^{\circ}C$ led to the formtion of glass but the glasses were converted to the crystalline phases at above this temperature. Crystaline phases precipitated from the Na0.75Zr2PSi2O12 glass were NASICON-like phase, Na2Si2O5, and free Zirconia. Phase that precipitated from the Na3Zr2PSi2O12 was only rhombohedral NASICON. For Na0.75Zr2PSi2O12 gels, framework of PO4 tetrahedra and SiO4(PO4) tetrahedra formed at low temperature but changed to that of SiO4 and SiO4(PO4) tetrahedras as it were crystallized. In the case of Na3Zr2PSi2O12 gel, framework of isolated PO4 and SiO4 tetrahedras formed at low temperature but changed to SiO4(PO4) tetrahedra framework which usually formed in the NASICON crystal after crystallization at high temperature. The gels treated up to 80$0^{\circ}C$ contained the residual water. The ionic conduction was attributed to the motion of proton and Na+ ion at low (up to 150~20$0^{\circ}C$) and high temperatures, respectively. As the temperature of heat treatment increased, ionic conductivity gradaully increased with the extent of precipitation of crystalline phase.

  • PDF

Preparation and Electrochemical Behaviors of Polymer Electrolyte Based on PEO/PMMA Containing Li Ion (Li 이온 포함하는 PEO/PMMA 고분자 전해질의 제조 및 전기화학적 거동)

  • Han, A-Reum;Park, Soo-Jin;Shin, Jae-Sup;Kim, Seok
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.476-480
    • /
    • 2009
  • A polymer composite electrolyte of a blend of poly(methyl methacrylate)(PMMA) and poly(ethylene oxide) (PEO) as a host polymer, the ethylene carbonate as a solvent, and $LiClO_4$ as a salt was studied. The crystallinity of the polymer electrolytes was evaluated using differential scanning calorimeter(DSC). The ionic conductivity of the polymer electrolytes was measured by frequency response analyzer(FRA) method. The effect of PEO/PMMA blend ratios on the ionic conduction in these electrolytes was investigated. The electrolyte films showed a phase separation due to immiscibility of the PMMA with the PEO. The PMMA-rich phase and the PEO-rich phase were produced during a film casting. The ionic conductivity of blend electrolyte was dependent on the content of PMMA and showed the highest value at 20 wt.%. However, when PMMA content exceeds 20 wt.%, the ionic conductivity was decreased due to the slow ionic transport through the PMMA-rich phase.

Relationship between Ionic Conductivity and Composition of Li2O-ZrO2-SiO2 Glasses Determined from Mixture Design (혼합물계획법에 의한 Li2O-ZrO2-SiO2 유리의 이온전도도와 조성의 관계)

  • Kang, Eun-Tae;Kim, Myoung-Joong;Kim, Jae-Dong
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.219-223
    • /
    • 2007
  • The ionic conductivity of $Li_2O-ZrO_2-SiO_2$ glasses has been designed and analyzed on the basis of a mixture design experiment with constraints. Fitted models for the activation energy and the ionic conductivity are as follows: $Q(kJ/moi)=54.8565x_1+144.825x_2+133.846x_3-170.908x_1x_3-334.338x_2x_3$ $log{\sigma}(300K)=-5.00245x_1-1.17876x_2-15.5173x_3+17.4522x_1x_3$. The electrical properties are very sensitive to the ratio of $Li_2O/SiO_2$. The effect of $ZrO_2$ is less than that of this ratio but $ZrO_2$ component attributes to the reduction of the activation energy. The optimal composition for best ionic conduction based on these fitted models is $55Li_2O{\cdot}10ZrO_2{\cdot}35SiO_2$. Its activation energy and ionic conductivity at 300 K are 46.98 kJ/mol and $1.08{\times}10^{-5}{\Omega}^{-1}{\cdot}cm^{-1}$, respectively.

Additivity Factors Analysis of Compositions in Li2O-TeO2-ZnO Glass System Determined from Mixture Design (혼합물설계법에 의한 Li2O-TeO2-ZnO 유리의 물성에 대한 조성의 가성성인자 분석)

  • Jung, Young-Joon;Lee, Kyu-Ho;Kim, Tae-Ho;Kim, Young-Seok;Na, Young-Hoon;Ryu, Bong-Ki
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.617-622
    • /
    • 2008
  • In this study, the additivity factors of compositions to density and glass transition point ($T_g$) in a $xLi_2O-(1-x)[(1-y)TeO_2-yZnO]$ (0$T_g$ was discussed. As a method for predicting the relation between glass structure and ionic conductivity, density was measured by the Archimedes method. The glass transition point was analyzed to predict the relation between ionic conductivity and the bonding energy between alkali ions and non-bridge oxygen (NBO). The relation equations showing the additivity factor of each composition to the two properties are as follows: Density(g/$cm^3$) = $2.441x_1\;+\;5.559x_2\;+\;4.863x_3\;T_g(^{\circ}C)$ = $319x_1\;+\;247x_2\;+\;609x_3\;-\;1950x_1x_3$ ($x_1$ : fraction of $Li_2O$, $x_2$ : fraction of $TeO_2$, $x_3$ : fraction of ZnO) The density decreased as $Li_2O$ content increased. This was attributed to change of the $TeO_2$ structure. From this structural result, the electric conductivity of the glass samples was predicted following the ionic conduction mechanism. Finally, it is expected that electric conductivity will increase as the activation energy for ion movement decreases.

Mixed Ionic and Electronic Conductivity of Lanthanum Sesquioxide (산화란타늄의 이온 및 전자전도도)

  • Keu Hong Kim;Chang Kwon Kang;Jong Hwan Lee;Jae Shi Choi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.301-307
    • /
    • 1987
  • The electrical conductivity of highly pure polycrystalline sample of $La_2O_3$ has been measured at temperatures from $600^{\circ}C$ to $1,050^{\circ}C$ and oxygen pressure range of $1{\times}10^{-6}$ torr to $1{\times}10^2$ torr. The defect structure and semiconductor type are investigated by measuring the temperature and oxygen pressure dependences of electrical conductivity. Sintered $La_2O_3$ exhibits the electrical conductivities in the range of $1{\times}10^{-9}\;to\;1{\times}10^{-3}\;ohm^{-1}{\cdot}cm^{-1}$ under the above oxygen pressures. The oxygen pressure dependences on electrical conductivity are characterized by 5.3 at $1,000^{\circ}C$ and 5.7 at $700^{\circ}C$ and more higher values of 9∼14 below $700^{\circ}C$. The increase in n value with decreasing temperature indicates that a simple conduction mechanism does not exist in this material. The conduction carriers are not metal vacancy but oxygen ion at lower pressures. The conduction data indicate a significant ionic conduction at lower temperatures and electronic conduction at higher temperatures.

  • PDF

Effect of Electrode Design on Electrochemical Performance of Highly Loaded LiCoO2 Positive Electrode in Lithium-ion Batteries (리튬이온 이차전지용 고로딩 LiCoO2 양극의 전극설계에 따른 전기화학적 성능연구)

  • Kim, Haebeen;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.47-55
    • /
    • 2020
  • Highly loaded LiCoO2 positive electrodes are prepared to construct high-energy density lithium-ion batteries, their electrochemical performances are evaluated. For the standard electrode, a loading of about 2.2 mAh/㎠ is used, and for a high-loading electrode, an electrode is manufactured with a loading level of about 4.4 mAh/㎠. The content of carbon black as electronic conducting additive, and the porosity of the electrode are configured differently to compare the effects of electron conduction and ionic conduction in the highly loaded LiCoO2 electrode. It is expected that the electrochemical performance is improved as the amount of the carbon black increases, but the specific capacity of the LiCoO2 electrode containing 7.5 weight% carbon black is rather reduced. When the conductive material is excessively provided, an increase of electrode thickness by the low content of the LiCoO2 active material in the same loading level of the electrode is predicted as a cause of polarization growth. When the electrode porosity increases, the path of ionic transport can be extended, but the electron conduction within the electrode is disadvantageous because the contact between the active material and the carbon black particles decreases. As the electrode porosity is lowered through the sufficient calendaring of the electrode, the electrochemical performance is improved because of the better contact between particles in the electrode and the reduced electrode thickness. In the electrode design for the high-loading, it is very important to construct the path of electron conduction as well as the ion transfer and to reduce the electrode thickness.