• 제목/요약/키워드: ionic calcium

검색결과 90건 처리시간 0.028초

체외순환시 혈청 이온화칼슘 측정치의 변동에 관한 연구 (A Study on a Change of Serum Ionic Calcium after Extracorporeal Circulation)

  • 서동만;김종환
    • Journal of Chest Surgery
    • /
    • 제18권2호
    • /
    • pp.205-213
    • /
    • 1985
  • It is well documented that calcium is essential to cardiac contraction and the amplitude of contractility is proportional to the ionized calcium not to total calcium. Changes of serum ionic calcium before and after extracorporeal circulation were observed in fifty two patients operated on at Dept. of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, from May 21st, 1984, to July 6th, 1984. They were 28 males and 24 females including 21 acyanotic congenital heart diseases, 21 cyanotic congenital heart diseases, and 10 acquired valvular heart diseases. In general, preoperative serum ionic calcium was around the normal level, but those of immediate postoperative day and postop-first day were decreased subnormally with significance [P<0.05 vs. preop.]. From postop-third day, serum ionic calcium was returned to normal range. No significant difference was noticed in subgroups divided by 10 Kg of body weight and by the methods of myocardial protection. But the change of serum ionic calcium in the patients with prolonged pump time over 90 minutes was remarkable and the values were as follow; on immediate postop-day 1.780.18 mEq/L vs. 1.970.20 mEq/L [P<0.005],on postop-first day, 1.940.20mEq/L vs. 2.060.12 mEq/L [P<0.025], on postop-third day, 2.030.11mEq/L vs. 2.150.13mEq/L [P<0.01], and on postop-seventh day, 2.030.09mEq/L vs. 2.190.11mEq/L [P<0.005]. In summary, the serum ionic calcium was lowered after extracorporeal circulation and even severer degree according to the prolongation of bypass time. So, after extracorporeal circulation esp. in the cases with prolonged bypass time, early correction of lowered serum ionic calcium would be helpful to the postoperative hemodynamics.

  • PDF

EVA 에멀젼의 내수성 및 기계적 특성에 미치는 금속 이온 가교제의 효과 (Effect of Metal Ionic Crosslinking Agents on the Water Resistance and Mechancial Properties of EVA Emulsion)

  • 이은경;최세영
    • 접착 및 계면
    • /
    • 제9권2호
    • /
    • pp.24-31
    • /
    • 2008
  • 본 연구에서는 EVA 에멀젼에 내수성 및 기계적 특성을 향상시키기 위하여 금속 이온 가교제인 calcium hydroxide 및 magnesium carbonate를 사용하여 이온성 가교결합을 도입하였다. EVA 에멀젼 필름의 가교밀도, 열적특성, 표면자유에너지 그리고 인장강도, 파단신율 및 인열강도 특성을 고찰하였다. 금속 이온 가교제 양이 증가함에 따라 EVA 에멀젼의 가교밀도는 증가하였고, 이에 내수성과 $T_g$ 값도 증가하였다. 그러나 EVA 에멀젼 필름의 표면에너지 및 기계적 특성들은 다소 다른 거동을 보였다. Calcium hydroxide 0.4% 그리고 magnesium carbonate 0.5%를 첨가한 경우가 EVA 에멀젼에 강한 이온성 가교결합이 형성되어 가장 높은 표면 자유에너지 값과 인장강도 및 인열강도를 보였다. 그러므로 본 연구에서 calcium hydroxide 및 magnesium carbonate와 같은 금속 이온 가교제가 EVA 에멀젼의 내수성과 기계적 물성을 향상시킴을 확인하였다.

  • PDF

칼슘강화 두유의 제조 및 단백질과 칼슘의 체외 소화특성 (Preparation of Calcium-fortified Soymilk and in Vitro Digestion Properties of Its Protein and Calcium)

  • 변진원;황인경
    • 한국식품과학회지
    • /
    • 제28권6호
    • /
    • pp.995-1000
    • /
    • 1996
  • 본 실험은 두유에 칼슘을 강화하기 위해 두유 단백질의 칼슘내인성을 높이기 위한 방법으로 두유 단백질을 부분가수분해시킬 최적 단백분해효소 및 그의 최적 처리조건을 결정하였고, 효소처리한 뒤 칼슘염을 첨가하여 제조된 칼슘강화 두유의 체외소화시 단백질과 칼슘의 소화특성을 조사하였다. 두유에 처리된 4가지 단백분해효소 중에서 Bacillus polymyxa의 단백분해효소가 pH 7.5, $50^{\circ}C$, 10min의 처리조건하에서 처리 후 두유에 쓴맛을 남기지 않고, 칼슘염을 첨가하였을 때 응고현상을 가장 적게 나타내는 것으로 밝혀졌다. 또 가수분해 정도가 증가할수록 칼슘에 의한 응고정도는 감소했으나 10분 이후부터는 쓴맛이 감지되었으므로 효소처리시간은 10분으로 결정하였다. 두유에 효소처리를 한 뒤 염화칼슘을 5, 15, 25 mM 첨가하여 칼슘강화 두유를 제조하여 단백질의 체외소화율을 분석한 결과, 두유에 첨가된 칼슘의 농도와 무관하게 모든 칼슘강화 두유가 표준두유와 유사한 소화율을 나타냈다. 소화전에는 표준두유에 비해 효소처리만 한 두유의 가용성 칼슘이 약간 높으면서 이온형태의 것은 적게 나타났으며 효소처리 후 염화칼슘을 5, 15, 25 mM 첨가하여 만든 칼슘강화 두유는 이온형태의 칼슘함량이 점차 증가하였다. 펩신을 처리하였을 때는 가용성칼슘이 거의 이온형태의 것으로 나타났으며 두유에 칼슘이 많이 강화될수록 유리되는 이온형태의 칼슘함량도 증가하였다. 이상의 결과를 미루어 볼 때, 우유와 비슷한 수준으로 칼슘이 첨가된 두유도 단백질의 체외 소화율은 감소되지 않았으며, 소화시 체내에 흡수될 수 있는 이온 형태의 칼슘의 양은 첨가량과 비례하였으므로 이와 같은 방법으로 칼슘강화 두유를 제조할 때 칼슘의 체내 이용도는 증가할 수 있을 것으로 생각된다.

  • PDF

분자체 모델을 이용한 수종의 수산화칼슘 제재의 이온 용출에 관한 연구 (A STUDY OF IONIC DISSOCIATION ON VARIOUS CALCIUM HYDROXIDE PASTES USING MOLECULAR SIEVING MODEL)

  • 이경선;박광균;유윤정;이승종
    • Restorative Dentistry and Endodontics
    • /
    • 제27권6호
    • /
    • pp.632-643
    • /
    • 2002
  • The purpose of this study was two-fold. First was to evaluate whether the molecular sieving model was appropriate for ionic dissociation experiment. Second was to compare the dissociation of calcium and hydroxyl ions from five types of calcium hydroxide pastes (Pure calcium hydroxide paste, DT temporary $dressing^{\circledR},{\;}Metapaste^{\circledR},{\;}Chidopex^{\circledR},{\;}Metapex^{\circledR}$) in three vehicles (aqueous, viscous and oily) and the antibacterial effect. Each calcium hydroxide pastes was placed into 0.65ml tube with cap and then 15% polyacrylamide gel was placed onto calcium hydroxide pastes. After the gel was hardened, the tubes were filled with tridistilled water (pH 7.14) and closed with cap. The tubes were stored in $37^{\circ}C$ 100% incubator The pH reading and the concentration of calcium ions were taken at 1, 4, 7. 10, and 14 days. The brain heart infusion agar plates with S. mutans and A. actinomycetemcomitans were used far antibacterial activity test. Middle of agar plate was filled with the calcium hydroxide pastes. The plates were incubated at $37^{\circ}C$ and observations were made to detect the zones of inhibition. These data were evaluated statistically by use of the analysis of variance and duncan test. The results were as follows. 1. In fresh mixing state, the pH of five types of calcium hydroxide pastes were measured between 12.5 and 12.8. 2. The pH was increased in all five types of calcium hydroxide pastes compared with control group. In 14 days, Pure calcium hydroxide paste (11.45) and DT temporary $dressing^{\circledR}$ (11.33) showed highest pH, followed by $Metapaste^{\circledR}$ (9.49), $Chidopex^{\circledR}$ (8.37) and $Metapex^{\circledR}$ (7.59) 3. Calcium was higher in all five types of calcium hydroxide pastes compared with control group. In 14 days, Pure calcium hydroxide paste (137.29 mg%) and DT temporary $dressing^{\circledR}$ (124.6 mg%) showed highest value, followed by $Metapaste^{\circledR}$ (116.74 mg%), $Chidopex^{\circledR}$ (111.84 mg%) and $Metapex^{\circledR}$ (60.22 mg%). 4. The zones of bacterial inhibition were seen around all five types of calcium hydroxide pastes. $Chidopex^{\circledR}{\;}and{\;}Metapex^{\circledR}$ groups which include iodoform were observed significantly larger zone of inhibition in A. actinomycetemcomitans compared with the other calcium hydroxide groups (p<0.05) However, $Metapex^{\circledR}$ showed the least antibacterial effect on S. mutans compared with other groups (p<0.05). The molecular sieving model was found to be acceptable in dissociation experiment of hydroxyl and calcium ions when compared with the previous tooth model study. But this model was not appropriate for the antibacterial test.

이온마이그레이션에 대한 플라스틱과 금속첨가제의 영향 연구 (A Study on the Effect of Metallic Fillers and Plastic for Ionic Migration)

  • 전상수;김지정;이호승
    • 자동차안전학회지
    • /
    • 제13권2호
    • /
    • pp.30-34
    • /
    • 2021
  • Electrical failures and reliability problems of electronic components by ionic migration between adjacent device terminals have become an issue in automotive electronics. Especially unlike galvanic corrosion, ionic migration is occurred at high temperature and high humidity under applied electric field condition. Until now, although extensive studies of the ionic migrations dealing with PCBs, electrodes, and solders were reported, there is no study on the effect of insulation polymers and metallic fillers for ionic migration. In this research, therefore, ionic migration induced by the types and contents of polymers and metallic fillers, and variety conditions of temperature, humidity, and applied voltage was studied in detail. Ester and amide types of liquid crystal polymer (LCP) and poly (phthalamide) (PPA) were used as base polymers, respectively and compounded with the metallic fillers of Copper iodide (CuI), Zinc stearate (Zn-st), or Calcium stearate (Ca-st) in various compositions. The compounding polymers were fabricated in IPC-B-24 of SIR test coupon according to ISO 9455-17 with Cu electrodes for ionic migration test. While there is no change in LCP-based samples, ionic migration in PPA compounding sample with a high water absorption property was accelerated in the presence of 0.25 wt% or above of CuI at the environmental conditions of 85℃, 85% RH and 48V. The dendritic short-circuit growth of Cu caused by ionic migration between the electrodes on the surface of compounded polymers was systematically observed and analyzed by using optical microscopy and SEM (EDX).

수산화칼슘 근관약제와 산화아연-유지놀의 반응에 관한 화학적 분석 (CHEMICAL INVESTIGATION ON THE REACTION BETWEEN CALCIUM HYDROXIDE INTRACANAL MEDICAMENT AND ZINC OXIDE-EUGENOL)

  • 박숙형;박준철;김성교
    • Restorative Dentistry and Endodontics
    • /
    • 제25권2호
    • /
    • pp.272-288
    • /
    • 2000
  • 수산화칼슘은 여러 약리작용으로 인해 근관소독제로 널리 사용되고 있는 약제이다. 근관 내에 수산화칼슘을 투약한 후 gutta-percha와 더불어 산화아연-유지놀계 근관시멘트로 근관을 충전하는 경우 근관시멘트의 물성에 변화가 있다는 보고가 있다. 따라서 본 연구에서는 수산화칼슘과 산화아연-유지놀 간의 반응에 의해 생성되는 수산화칼슘-유지놀 화합물의 반응성을 확인하기 위하여 수산화칼슘, 유지놀, 산화아연-유지놀, 수산화칼슘-유지놀 및 수산화칼슘-산화아연-유지놀 화합물을 XRD, FT-IR spectrophotometer 및 FT-NMR spectrometer로 분석하여 다음과 같은 결과를 얻었다. 1. 수산화칼슘과 산화아연-유지놀 간의 반응으로 생성된 화합물은 다음과 같았다. 2. 수산화칼슘은 유지놀과 화학결합(이온결합)을 하는 것으로 나타났다. 3. $Ca^{2+}$과 유지놀 사이의 결합은 단순 이온결합이다. 따라서 수산화칼슘-산화아연유지놀 화합물은 중화반응에서 생기거나 외부에서 유입된 물이 존재시 쉽게 이온화되어 물리적 성질이 저하될 것으로 생각된다.

  • PDF

Role of the Salt Bridge Between Arg176 and Glu126 in the Thermal Stability of the Bacillus amyloliquefaciens ${\alpha}$-Amylase (BAA)

  • Zonouzi, Roseata;Khajeh, Khosro;Monajjemi, Majid;Ghaemi, Naser
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권1호
    • /
    • pp.7-14
    • /
    • 2013
  • In the Bacillus amyloliquefaciens ${\alpha}$-amylase (BAA), the loop (residues 176-185; region I) that is the part of the calcium-binding site (CaI, II) has two more amino acid residues than the ${\alpha}$-amylase from Bacillus licheniformis (BLA). Arg176 in this region makes an ionic interaction with Glu126 from region II (residues 118-130), but this interaction is lost in BLA owing to substitution of R176Q and E126V. The goal of the present work was to quantitatively estimate the effect of ionic interaction on the overall stability of the enzyme. To clarify the functional and structural significance of the corresponding salt bridge, Glu126 was deleted (${\Delta}$E126) and converted to Val (E126V), Asp (E126D), and Lys (E126K) by site-directed mutagenesis. Kinetic constants, thermodynamic parameters, and structural changes were examined for the wild-type and mutated forms using UV-visible, atomic absoption, and fluorescence emission spectroscopy. Wild-type exhibited higher $k_{cat}$ and $K_m$ but lower catalytic efficiency than the mutant enzymes. A decreased thermostability and an increased flexibility were also found in all of the mutant enzymes when compared with the wild-type. Additionally, the calcium content of the wild-type was more than ${\Delta}E126$. Thus, it may be suggested that ionic interaction could decrease the mobility of the discussed region, prevent the diffusion of cations, and improve the thermostability of the whole enzyme. Based on these observations, the contribution of loop destabilization may be compensated by the formation of a salt bridge that has been used as an evolutionary mechanism or structural adaptation by the mesophilic enzyme.

ESTIMATION FOR DEWATERABILITY ON INTERACTION BETWEEN CATIONIC FLOCCULANTS AND IONIC MATERIALS IN DISSOLVING WATER

  • Bae, Young-Han;Lee, Sung-Sik
    • Environmental Engineering Research
    • /
    • 제11권5호
    • /
    • pp.266-276
    • /
    • 2006
  • Commonly, the flocculant is dissolved in process or recycle water in industrial plant which has many ionic materials. Therefore, the polymer degradation in aqueous solution by chemical, mechanical or bacteriological may occur, sometimes rapidly. Even if the same flocculant is dissolved, the flocculation characteristics and the properties of dissolving polymer varied with the kind of dissolving water. In this study, we try to estimate the interaction between flocculants and ionic materials in dissolving water using self inversing emulsion polymer; polyacrylamide-co-trimethyl ammonium ethyl acrylate chloride flocculants which have varying molecular weights and structures at a several conditions. The polymeric flocculant is dissolved in artificial dissolving water with Potassium Chloride (PC), Calcium Chloride anhydrous (CC), Potassium Hydroxide (PH), Sodium Chloride (SC), Sodium Bromate (SB) and Iron (II) Sulfate Heptahydrate (IS) as ionic sources. Experimental results indicate that the cationic and anionic ions in dissolving water induce the hydrolysis, degradation of cationic functional group and uncoiling of polymeric flocculants, therefore, the flocculation efficiency decreased by undesired polymer. According that result, it is important to estimate not only its structures and physical properties but also the qualities of dissolving water to optimize the efficiency.

수경재배 시 다량 이온 농도 측정을 위한 이온 선택성 전극의 응용 (Application of Ion-Selective Electrodes to Measure Ionic Concentrations of Macronutrients in Hydroponics)

  • 김민수;박두산;조성인
    • Journal of Biosystems Engineering
    • /
    • 제32권1호
    • /
    • pp.37-43
    • /
    • 2007
  • This study was carried out to investigate the applicability of PVC membrane-based ion-selective electrodes for macronutrients (K, Ca, and N) by measuring of potassium, calcium, nitrate ions in hydroponic nutrient solution. The capabilities of two ion-selective membranes with varying chemical compositions for each ion were evaluated in terms of sensitivity, selectivity, and lifetime to choose sensing elements suitable for measuring typical ranges of nutrient concentrations in hydroponic solutions. The selected calcium and nitrate ion-selective membranes showed effectively sensitive responses to calcium and nitrate ions with lifetimes of 25 and 15 days, respectively. The addition of a cation additive to the potassium membrane cocktail allowed its sensitivity to be increased whereas its lifetime was reduced from 30 days to 10 days.

Current aspects and prospects of glass ionomer cements for clinical dentistry

  • Park, Eun Young;Kang, Sohee
    • Journal of Yeungnam Medical Science
    • /
    • 제37권3호
    • /
    • pp.169-178
    • /
    • 2020
  • Glass ionomer cement (GIC) is a tailor-made material that is used as a filling material in dentistry. GIC is cured by an acid-base reaction consisting of a glass filler and ionic polymers. When the glass filler and ionic polymers are mixed, ionic bonds of the material itself are formed. In addition, the extra polymer anion reacts with calcium in enamel or dentin to increase adhesion to the tooth tissue. GICs are widely used as adhesives for artificial crowns or orthodontic brackets, and are also used as tooth repair material, cavity liner, and filling materials. In this review, the current status of GIC research and development and its prospects for the future have been discussed in detail.