• 제목/요약/키워드: ion-mobility

검색결과 232건 처리시간 0.026초

High rate deposition of poly-si thin films using new magnetron sputtering source

  • Boo, Jin-Hyo;Park, Heon-Kyu;Nam, Kyung-Hoon;Han, Jeon-Geon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.186-186
    • /
    • 2000
  • After LeComber et al. reported the first amorphous hydrogenated silicon (a-Si: H) TFT, many laboratories started the development of an active matrix LCDs using a-Si:H TFTs formed on glass substrate. With increasing the display area and pixel density of TFT-LCD, however, high mobility TFTs are required for pixel driver of TF-LCD in order to shorten the charging time of the pixel electrodes. The most important of these drawbacks is a-Si's electron mobiliy, which is the speed at which electrons can move through each transistor. The problem of low carier mobility for the a-Si:H TFTs can be overcome by introducing polycrystalline silicon (poly-Si) thin film instead of a-Si:H as a semiconductor layer of TFTs. Therefore, poly-Si has gained increasing interest and has been investigated by many researchers. Recnetly, fabrication of such poly-Si TFT-LCD panels with VGA pixel size and monolithic drivers has been reported, . Especially, fabricating poly-Si TFTs at a temperature mach lower than the strain point of glass is needed in order to have high mobility TFTs on large-size glass substrate, and the monolithic drivers will reduce the cost of TFT-LCDs. The conventional methods to fabricate poly-Si films are low pressure chemical vapor deposition (LPCVD0 as well as solid phase crystallization (SPC), pulsed rapid thermal annealing(PRTA), and eximer laser annealing (ELA). However, these methods have some disadvantages such as high deposition temperature over $600^{\circ}C$, small grain size (<50nm), poor crystallinity, and high grain boundary states. Therefore the low temperature and large area processes using a cheap glass substrate are impossible because of high temperature process. In this study, therefore, we have deposited poly-Si thin films on si(100) and glass substrates at growth temperature of below 40$0^{\circ}C$ using newly developed high rate magnetron sputtering method. To improve the sputtering yield and the growth rate, a high power (10~30 W/cm2) sputtering source with unbalanced magnetron and Si ion extraction grid was designed and constructed based on the results of computer simulation. The maximum deposition rate could be reached to be 0.35$\mu$m/min due to a high ion bombardment. This is 5 times higher than that of conventional sputtering method, and the sputtering yield was also increased up to 80%. The best film was obtained on Si(100) using Si ion extraction grid under 9.0$\times$10-3Torr of working pressure and 11 W/cm2 of the target power density. The electron mobility of the poly-si film grown on Si(100) at 40$0^{\circ}C$ with ion extraction grid shows 96 cm2/V sec. During sputtering, moreover, the characteristics of si source were also analyzed with in situ Langmuir probe method and optical emission spectroscopy.

  • PDF

PVD 코팅법에 의한 ZnO제조 및 특성 (Preparation and characterization of Zinc Oxide films deposition by (PVD))

  • 김성진;박헌균
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.95.1-95.1
    • /
    • 2010
  • Transparent conducting ZnO films were deposited to apply DSSC Substrate on glass substrates at $500^{\circ}C$ by ionbeam-assisted deposition. Crystallinity, microstructure, surface roughness, chemical composition, electrical and optical properties of the films were investigated as a function of deposition parameters such as ion energy, and substrate temperature. The microstructure of the polycrystalline ZnO films on the glass substrate were closely related to the oxygen ion energy, arrival ratio of oxygen to Zinc Ion bombarded on the growing surface. The main effect of energetic ion bombardment on the growing surface of the film may be divided into two categories; 1) the enhancement of adatom mobility at low energetic ion bombardment and 2) the surface damage by radiation damage at high energetic ion bombardment. The domain structure was obtained in the films deposited at 300 eV. With increasing the ion energy to 600 eV, the domain structure was changed into the grain structure. In case of the low energy ion bombardment of 300 eV, the microstructure of the film was changed from the grain structure to the domain structure with increasing arrival ratio. At the high energy ion bombardment of 600 eV, however, the only grain structure was observed. The electrical properties of the deposited films were significantly related to the change of microstructure. The films with the domain structure had larger carrier concentration and mobility than those with the grain structure, because the grain boundary scattering was reduced in the large size domains compared with the small size grains. The optical transmittance of ZnO films was dependent on a surface roughness. The ZnO films with small surface roughness, represented high transmittance in the visible range because of a decreased light surface scattering. By varying the ion energy and arrival ratio, the resistivity and optical transmittance of the films were varied from $1.1{\times}10^{-4}$ to $2.3{\times}10^{-2}{\Omega}cm$ and from 80 to 87%, respectively. The ZnO film deposited at 300 eV, and substrate temperature of $500^{\circ}C$ had the resistivity of $1.1{\times}10^{-4}{\Omega}cm$ and optical transmittance of 85% in visible range. As a result of experiments, we provides a suggestition that ZnO thin Films can be effectively used as the DSSC substrate Materials.

  • PDF

Fabrication of excimer laser annealed poly-si thin film transistor by using an elevated temperature ion shower doping

  • Park, Seung-Chul;Jeon, Duk-Young
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제11권11호
    • /
    • pp.22-27
    • /
    • 1998
  • We have investigated the effect of an ion shower doping of the laser annealed poly-Si films at an elevated substrate temperatures. The substrate temperature was varied from room temperature to 300$^{\circ}C$ when the poly-Si film was doped with phosphorus by a non-mass-separated ion shower. Optical, structural, and electrical characterizations have been performed in order to study the effect of the ion showering doping. The sheet resistance of the doped poly-Si films was decreased from7${\times}$106 $\Omega$/$\square$ to 700 $\Omega$/$\square$ when the substrate temperature was increased from room temperature to 300$^{\circ}C$. This low sheet resistance is due to the fact that the doped film doesn't become amorphous but remains in the polycrystalline phase. The mildly elevated substrate temperature appears to reduce ion damages incurred in poly-Si films during ion-shower doping. Using the ion-shower doping at 250$^{\circ}C$, the field effect mobility of 120 $\textrm{cm}^2$/(v$.$s) has been obtained for the n-channel poly-Si TFTs.

  • PDF

모세관 현상에 의한 토양 환경에서의 지하수 거동에 관한 연구 (Studies on the Mobility of Groundwater in Soil Environment by Capillary Rise Observation)

  • 최수아;최은진;김동수
    • 한국물환경학회지
    • /
    • 제27권1호
    • /
    • pp.115-119
    • /
    • 2011
  • The mobility of groundwater in the soil environment has an important role in the soil environment and absorption of plant. Therefore, studies on the mobility of groundwater considering the physical and chemical properties of soil is very important. In this study, movement of water due to change in soil particle size were observed by capillary rise. The height of the capillaries was measured according to capillary diameter, temperature and solution concentration. The inner diameter of each capillary itself is 0.012, 0.016, 0.024, 0.027 cm, and experiments were performed at $22^{\circ}C$. As a result, the height of the capillaries decreased with increasing capillary diameter, and the solution temperature but increased with increasing concentration. Changes in the height of the capillaries are interpreted to related with surface tension by the Young-Laplace equation. Also on the mobility of groundwater, the increase of water and soil temperatures can be significant factors caused by ion strength and global warming as well as pores in the soil particles. The results of this study is considered to provide the basic data on the behavior of groundwater in the soil environment.

Molecular Dynamics Simulation Study of the Ionic Mobility of OH- Using the OSS2 Model

  • 이송희
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권8호
    • /
    • pp.1154-1158
    • /
    • 2006
  • Anomalously high ionic mobilities of H+ and $OH^-$ are owing to the transfer of $H^+$ by the Grotthus chain mechanism. Molecular dynamics simulations for the system of 215 water including $OH^-$ ion at 298.15 K using the OSS2 model [J. Chem. Phys. 109, 5547 (1998)] as a dissociable water model with the use of Ewald summation were carried out in order to study the dynamics of $OH^-$ in water. The calculated ionic mobility of $OH^-$ is in good agreement with the experimental result and the Grotthus chain mechanism is fully understood.

Effects of CF4 Plasma Treatment on Characteristics of Enhancement Mode AlGaN/GaN High Electron Mobility Transistors

  • Horng, Ray-Hua;Yeh, Chih-Tung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.62-62
    • /
    • 2015
  • In this study, we study the effects of CF4 plasma treatment on the characteristics of enhancement mode (E-mode) AlGaN/GaN high electron mobility transistors (HEMTs). The CF4 plasma is generated by inductively coupled plasma reactive ion etching (ICP-RIE) system. The CF4 gas is decomposed into fluorine ions by ICP-RIE and then fluorine ions will effect the AlGaN/GaN interface to inhibit the electron transport of two dimension electron gas (2DEG) and increase channel resistance. The CF4 plasma method neither like the recessed type which have to utilize Cl2/BCl3 to etch semiconductor layer nor ion implantation needed high power to implant ions into semiconductor. Both of techniques will cause semiconductor damage. In the experiment, the CF4 treatment time are 0, 50, 100, 150, 200 and 250 seconds. It was found that the devices treated 100 seconds showed best electric performance. In order to prove fluorine ions existing and CF4 plasma treatment not etch epitaxial layer, the secondary ion mass spectrometer confirmed fluorine ions truly existing in the sample which treatment time 100 seconds. Moreover, transmission electron microscopy showed that the sample treated time 100 seconds did not have etch phenomena. Atomic layer deposition is used to grow Al2O3 with thickness 10, 20, 30 and 40 nm. In electrical measurement, the device that deposited 20-nm-thickness Al2O3 showed excellent current ability, the forward saturation current of 210 mA/mm, transconductance (gm) of 44.1 mS/mm and threshold voltage of 2.28 V, ION/IOFF reach to 108. As IV concerning the breakdown voltage measurement, all kinds of samples can reach to 1450 V.

  • PDF

Halo 구조의 MOSFET에서 이동도 감소 현상 (The Behavior of the Mobility Degradation in Pocket Implanted MOSFETS)

  • 이병헌;이기영
    • 대한전자공학회논문지SD
    • /
    • 제42권4호
    • /
    • pp.1-8
    • /
    • 2005
  • 소오스와 드레인 근처에 포켓이온이 주입된 halo구조의 MOSFET에서 전송자의 이동도 감소는 포켓이온주입의 조건에 따라 이온화된 불순물의 증가에 따른 쿨롱(Coulomb) 산란율의 증가에 의한 이동도의 감소량보다 큰 이동도의 감소가 관측될 수 있다. 게이트 바이어스에 대한 이동도의 특성변화도 기존의 일차적인 쿨롱산란의 증가효과에 의한 해석과 비교하여 상이한 결과가 나타날 수 있음이 실험적으로 확인되고 있다. 본 연구에서는 포켓이온 주입에 의하여 쿨롱산란원이 되는 유효불순물 농도의 증가에 따른 일차적인 이동도의 감소효과를 벗어난 이동도 특성을 분석하여 이동도의 감소현상을 일반적으로 설명할 수 있는 개선된 해석적 모델을 제시하였다. 해석적인 결과를 도출하기 위하여 일차원 영역구분의 근사방법을 적용한 결과, 포켓이온 주입에 의하여 포논산란율 및 표면산란율(surface roughness scattering rate)의 증가도 이동도감소에 기여함이 보여 졌다. 채널의 전송자분포가 드레인 전류에 영향을 미치게 되므로 포켓이온에 의해 유발된 전송자분포의 효과를 분석하여 유효이동도가 추가적으로 감소함을 확인하였다.

Stabilization of Compact Protein Structures by Macrocyclic Hosts Cucurbit[n]urils in the Gas Phase

  • Lee, Jong Wha;Park, Mi Hyun;Ju, Jeong Tae;Choi, Yun Seop;Hwang, Soo Min;Jung, Dong Jin;Kim, Hugh I.
    • Mass Spectrometry Letters
    • /
    • 제7권1호
    • /
    • pp.16-20
    • /
    • 2016
  • Characterization of intact protein structures in the gas phase using electrospray ionization combined with ion mobility mass spectrometry has become an important tool of research. However, the biophysical properties that govern the structures of protein ions in the gas phase remain to be understood. Here, we investigated the impact of host-guest complexation of ubiquitin (Ubq) with macrocyclic host molecules, cucurbit[n]urils (CB[n]s, n = 6, 7), on its structure in the gas phase. We found that CB[n] complexation induces the formation of compact Ubq ions. Both CB[6] and CB[7] exhibited similar effects despite differences in their binding properties in solution. In addition, CB[n] attachment prevented Ubq from unfolding by collisional activation. Based on the experimental results, we suggest that CB[n]s prevent unfolding of Ubq during transfer to the gas phase to promote the formation of compact protein ions. Furthermore, interaction with positively charged residues per se is suggested to be the most important factor for the host-guest complexation effect.

유연한 플라스틱 기판 위에서의 ZnO 나노선 FET소자의 전기적 특성 (Electrical characteristics of a ZnO nanowire-based Field Effect Transistor on a flexible plastic substrate)

  • 강정민;김기현;윤창준;염동혁;정동영;김상식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.149-150
    • /
    • 2006
  • A ZnO nanowire-based FET is fabricated m this study on a flexible substrate of PES. For the flat and bent flexible substrates, the current ($I_D$) versus drain-source bias voltage ($V_{DS}$) and $I_D$ versus gate voltage ($V_G$) results are compared. The flat band was Ion/Ioff ratio of ${\sim}10^7$, a transconductance of 179 nS and a mobility of ~10.104 cm2/Vs at $V_{DS}$ =1 V. Also bent to a radius curvature of 0.15cm and experienced by an approximately strain of 0.77 % are exhibited an Ion/Ioff ratio of ${\sim}10^7$, a transconductance of ~179 nS and a mobility of ${\sim}10.10 cm^2/Vs$ at $V_{DS}$ = 1V. The electrical characteristics of the FET are not changed very much. although the large strain is given on the device m the bent state.

  • PDF

Hole Injection Layer by Ion Beam Assisted Deposition for Organic Electroluminescence Devices

  • Choi, Sang-Hun;Jeong, Soon-Moon;Koo, Won-Hoe;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1619-1622
    • /
    • 2005
  • The ultra thin hole injection layer (HIL) was deposited on an indium-tin-oxide (ITO) anode by using an ion beam assisted d eposition (IBAD) for the fabrication of an polymeric electroluminescence device for the first time. The device with the HIL deposited by IBAD has higher external quantum efficiency than the device with the HIL by conventional thermal evaporation. It is found that the deposited HIL by IBAD has high surface coverage on ITO anode in a few nm regions because the HIL prepared has high adatom mobility by ion beam energy.

  • PDF