• 제목/요약/키워드: ion spectroscopy

검색결과 1,046건 처리시간 0.029초

Advances in Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS)-Based Techniques for Elucidating Higher-Order Protein Structures

  • Seo, Jongcheol
    • Mass Spectrometry Letters
    • /
    • 제11권4호
    • /
    • pp.65-70
    • /
    • 2020
  • Despite its great success in the field of proteomics, mass spectrometry has limited use for determining structural details of peptides, proteins, and their assemblies. Emerging ion mobility spectrometry-mass spectrometry has enabled us to explore the conformational space of protein ions in the gas phase, and further combinations with the gas-phase ion spectroscopy and the collision-induced unfolding have extended its abilities to elucidating the secondary structure and local details of conformational transitions. This review will provide a brief introduction to the combined approaches of IMS-MS with gas-phase ion infrared spectroscopy or collision-induced unfolding and their most recent results that successfully revealed higher-order structural details.

Electronic Spectroscopy and Structure of CLF

  • Vadim A. Alekseev;D. W. Setser
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권1호
    • /
    • pp.9-22
    • /
    • 2000
  • Optical-optical double resonance experiments have been used to identify and characterize five ion-pair states and several of the bound and repulsive valence states of ClF. This report provides a description of these experiments for $^{35}CIF$ and $^{37}CIF$, and a summary of the current knowledge of the valence and ion-pair states. The important role of perturbations among the rovibronic levels of the bound valence states and their utilization in the double resonance technique is discussed. The ion-pair states of the same symmetry, ${\Omega}$=$0^+$ (E and f) and 1( $\beta$ and G) interact very strongly and the spectroscopy of these states is anomalous and, hence, interesting. Comparison is made to some recent ab initio calculations for ClF. One possible explanation of the irregular vibrational energy levels and rotational constants of the ion-pair states of $O^+$ and 1 symmetry is a crossing of the diabatic potentials of these states. Some currently unresolved questions about ClF spectroscopy are posed for future work. Where appropriate, analogy is made between the electronic states of ClF and the corresponding valence and ion-pair states of $Cl_2.$.

잔류가스분석기 및 발광 분광 분석법을 통한 중간압력의 NF3 플라즈마 실리콘 식각 공정 (Silicon Etching Process of NF3 Plasma with Residual Gas Analyzer and Optical Emission Spectroscopy in Intermediate Pressure)

  • 권희태;김우재;신기원;이환희;이태현;권기청
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.97-100
    • /
    • 2018
  • $NF_3$ Plasma etching of silicon was conducted by injecting only $NF_3$ gas into reactive ion etching. $NF_3$ Plasma etching was done in intermediate pressure. Silicon etching by $NF_3$ plasma in reactive ion etching was diagnosed through residual gas analyzer and optical emission spectroscopy. In plasma etching, optical emission spectroscopy is generally used to know what kinds of species in plasma. Also, residual gas analyzer is mainly to know the byproducts of etching process. Through experiments, the results of optical emission spectroscopy during silicon etching by $NF_3$ plasma was analyzed with connecting the results of etch rate of silicon and residual gas analyzer. It was confirmed that $NF_3$ plasma etching of silicon in reactive ion etching accords with the characteristic of reactive ion etching.

Titanium Oxide Film : A New Biomaterial For Artificial Heart Valve Prepared by Ion Beam Enhanced Deposition

  • Liu, Xianghuai;Zhang, Feng;Zheng, Zhihong;Huang, Nan
    • 한국진공학회지
    • /
    • 제6권S1호
    • /
    • pp.1-15
    • /
    • 1997
  • Titanium oxide films were prepared by ion beam enhanced deposition where the films were synthesized by deposition titianium atoms and simultaneously bombarding with xenon ion beam at an energy of 40 keV in an $O_2$ environ,ent. Structure and composition of titanium oxide films were investigated by X-ray Doffractopm (XRD) Ritjerfprd Backscattering Spectroscopy (RBS) and X-ray Diffraction(XRD) Rutherford Backscattering Spectroscopy (RBS) and X-ray photoelectron spectroscopy (XPS) The results show that thestructure of the prepared films exhibit a rutile phase structure wit high(200) orientation and the O/Ti ratio of the titanium oxide films was about 2:1 XPS anlysis shows that $Ti^{2+},Ti^{3+}\;and\;Ti^{4+}$ chemical states exist on the titanium oxide films. the blood compatibility of the titanium oxide films was studied by measurements of blood clotting time and platelet adhesion. The results show that the anticoagulation property of titanium oxide films improved significantly and better than that of LTI-carbon which was widely used to fabricate artificial heart valve.

  • PDF

유전체 이완 분광법의 원리 및 이를 이용한 전해액 미시구조 연구 (Basic theory of Dielectric Relaxation Spectroscopy and Studies of Electrolyte Structure)

  • 구본협;황순욱;이호춘
    • 전기화학회지
    • /
    • 제22권2호
    • /
    • pp.53-59
    • /
    • 2019
  • 전해질의 미시 구조분석을 위해서는 이온-이온 및 이온-용매 상호작용을 이해하는 것이 매우 중요하다. 이 총설은 유전체 이완 분광법(Dielectric relaxation spectroscopy)의 기본 원리와, 이를 이용한 전해질 구조 연구 사례를 소개하고자 한다. 유전체 이완 분광법은 임피던스법의 일종으로서, 수십 GHz 수준의 높은 주파수 영역에 걸쳐 전해질의 유전 특성을 측정한다. 이를 통해, 유전체 이완 분광법은 전해질 내 존재하는 다양한 극성 화학 종, 즉, 쌍극자 모멘트(Dipole moment)를 갖는 자유 용매(Free solvent) 및 이온쌍(Ion pair)의 종류와 농도에 대한 정보를 제공한다. 유전체 이완 분광법이 제공하는 정보는 기존 분석 기법(적외선 분광법(Infrared), 라만 분광법(Raman) 및 핵자기 공명 분광법(Nuclear magnetic resonance) 등)이 제공하는 정보들과 상호보완적 관계에 있으며, 이러한 종합적 분석을 통해 전해질 구조에 관한 깊은 이해가 가능하다.

직충돌 이온산란 분광법(ICISS)에 의한 고체 표면구조의 해석(3): 세라믹 재료의 표면 구조 해석 (Surface Structure Analysis of Solids by Impact Collision Ion Scattering Spectroscopy (3): Surface Structure of Ceramics)

  • 황연
    • 한국결정학회지
    • /
    • 제20권1호
    • /
    • pp.1-8
    • /
    • 2009
  • 이온산란 분광법(ISS: Ion Scattering Spectroscopy)은 표면 원자의 구조를 러더포드 후방산란법(RBS: Rutherford Backscattering Spectroscopy) 등과 같이 실공간에 대하여 직접 정보를 얻는 방법이다. 그 중에서도 산란각도를 $180^{\circ}$로 고정하여 산란이온 검출기를 설치한 직충돌 이온산란 분광법(ICISS: Impact Collision Ion Scattering Spectroscopy)은 산란된 이온의 궤적이 입사궤도와 거의 동일하기 때문에 산란궤적의 계산이 간단해지고, 최외층 뿐만 아니라 표면에서 수 층 깊이의 원자구조의 해석이 가능하다. 또한 비행시간형(TOF: Time-Of-Flight) 분석기를 채택하여 산란 이온 및 중성원자를 동시에 측정하면 입사 이온의 표면에서의 중성화에 관계 없이 산란 신호를 얻으므로 표면 원자의 결합 특성에 영향 받지 않고 사용할 수 있다. 본고에서는 ICISS의 원리, 장치, 측정방법 등을 소개한 제1편 및 반도체 표면구조, 금속/반도체 계면 등의 해석에 관하여 기술한 제2편에 이어서 세라믹 재료의 표면 원자 구조, 세라믹 박막의 원자 구조, 흡착 기체의 구조, 원소의 편석 등에 관한 연구 사례를 소개하고자 한다.

Green flow injection spectrophotometric system for lead ion (II) evaluation in vegetables samples using new azo reagent

  • Fatimah Lateef Al-Zubaidi;Khdeeja Jabbar Ali
    • 분석과학
    • /
    • 제36권1호
    • /
    • pp.1-11
    • /
    • 2023
  • A new, sensitive, and reliable flow injection methodology was investigated for the determination of lead ion (II) in vegetables' samples using a laboratory-prepared reagent 2-[(6-methoxy-2-benzothiazoly)azo]-4-methoxy phenol (6-MBTAMP). Infrared spectroscopy, UV-visible spectrophotometry, Energy dispersive X-ray spectroscopy (EDX), Elemental Analysis (CHN), nuclear magnetic resonance spectroscopy 1HNMR, and 13CNMR techniques were used to characterize the reagent and lead (II) complex. The method is based on lead ion (II) reacting with the reagent (6-MBTAMP) in a neutral solution to produce a green-red complex with a maximum absorbance at 670 nm. The optimum conditions, such as flow rate, lead ion (II) volume, reagent volume, medium pH, reagent concentration, and reaction coil length were thoroughly examined. The limits of detection (LOD) and quantification (LOQ) were determined to be 0.621 mg·L-1 and 2.069 mg·L-1 , respectively, while Sandell's sensitivity was determined to be 0.345 ㎍·cm-2.

HCD이온플레이팅 방법을 이용한 zzTiC코팅에 관한 연구 (A Study on the TiC Coating Using Hollow Cathode Discharge Ion Plating)

  • 김인철;서용운;황기웅
    • 대한전기학회논문지
    • /
    • 제41권8호
    • /
    • pp.875-882
    • /
    • 1992
  • Titanium carbide(TiC) films, known as having excellent characteristics of resistance to wear and corrosion, were deposited on SUS-304 sheets using HCD(Hollow Cathode Discharge) reactive ion plating with acetylene gas as the reactant gas. The characteristics of TiC films were examined by X-ray diffraction, micro-Vickers hardness tester, ${\alpha}$-step, SEM(Scanning Electron Spectroscopy), ESCA(Electron Spectroscopy for Chemical Analysis), and AES(Auger Electron Spectroscopy) and the results were discussed with regard to the changes of various deposition conditions(bias voltage, acetylene flow rate, temperature).

Enhanced Adhesion of Cu Film on the Aluminum Oxide by Applying an Ion-beam-mixd Al Seed Layar

  • 김형진;박재원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.229-229
    • /
    • 2012
  • Adhesion of Copper film on the aluminum oxide layer formed by anodizing an aluminum plate was enhanced by applying ion beam mixing method. Forming an conductive metal layer on the insulating oxide surface without using adhesive epoxy bonds provide metal-PCB(Printed Circuit Board) better thermal conductivities, which are crucial for high power electric device working condition. IBM (Ion beam mixing) process consists of 3 steps; a preliminary deposition of an film, ion beam bombardment, and additional deposition of film with a proper thickness for the application. For the deposition of the films, e-beam evaporation method was used and 70 KeV N-ions were applied for the ion beam bombardment in this work. Adhesions of the interfaces measured by the adhesive tape test and the pull-off test showed an enhancement with the aid of IBM and the adhesion of the ion-beam-mixed films were commercially acceptable. The mixing feature of the atoms near the interface was studied by scanning electron microscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy.

  • PDF

이온주입에 의한 PET(polyethylene teraphthalate)의 표면결합상태 변화와 표면전기전도도 특성 (Electrical Properties of PET(polyethylene teraphthalate) by Ion Implantation)

  • 이재형;길재근
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권7호
    • /
    • pp.382-386
    • /
    • 2004
  • A study has been made of surface modification of organic materials by ion implantation to increase the surface electrical properties. The substrate used were PET(polyethylene teraphtalate). N$^{+}$, Ar$^{+}$ implantation was peformed at energies of 40 keV and 50 keV with fluences from $5{\times}10^{15}$, $1{\times}10^{16}$,$7{\times}10^{16}$, $1{\times}10^{17}$/ ions/$cm^2$. UV/Vis, FT-IR and XPS spectroscopy measured for surface structure changes. Surface resistance decrease of implanted polymers was affected by ion implantation energy, ion species and ion dose rate. Surface conductivity of PET increased $2{\times}10^{9}$/∼$2{\times}10^{10}$/$\Omega$/sq by ion implantation. Result of various spectroscopy analysis, the cause of increasing PET surface conductivity was expected to breaking C=O bonds. It was formation carbon network structure by promote cross-linking and create C-C, C=C bonds.