• 제목/요약/키워드: ion profile

검색결과 349건 처리시간 0.023초

3D Plasma simulation을 이용한 Cylindrical Rotating Magnetron Sputtering Cathode 개발

  • 천용환;오지영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.179.1-179.1
    • /
    • 2013
  • Cylindrical Rotating Magnetron Sputtering Cathode (이하 Rotary Cathode)는 기존에 사용 되던 rectangular type 보다 Target 사용 효율이 높다는 큰 이점을 가지고 있다. 높은 Target 사용 효율은 비용 절감 효과와 직접적으로 관련 된다. 이번 연구는 3D Plasma simulation(PIC-MCC)을 통한 Target 사용 효율 80% 이상의 Rotary Cathode 개발을 목적으로 한다. Plasma simulation에 External Magnetic fields를 접목하여 Electron의 이동 궤적을 제어하였고, 생성된 Ion (Ar+)의 밀도 및 속도로 Plasma의 안정성과 Erosion 계산 구간을 선정 하였다. Target Erosion Profile은 Sputtering yield Data와 Target에 충돌한 Ion 정보를 사용하여 산출 하였으며, Sputtered Particles의 Deposition Profile은 계산된 Target Erosion Profile과 The cosine law of emission을 이용하여 계산 하였다. 실험 조건은 Plasma simulation의 초기조건 바탕으로 하여 2G size의 ITO Target을 대상으로 실험 하였다. 비 Erosion 영역 최소화하기 위해 Magnet Length를 변경하여 제작 적용 하였다. Simulation 계산 시간의 제약으로 인하여 simulation에서 생성된 최대 이온 밀도는 일반적으로 알려진 값 보다 적게 계산 되었지만, Simulation으로 예측한 Erosion Profile 및 Deposition Profile은 실험 값과 유사한 형태를 나타났으며, 실험 결과는 Target 사용 효율 80%이상의 결과를 보였다.

  • PDF

Profile and Dose Distribution for Therapeutic Heavy Ion Beams

  • Sasaki, Hitomi;Komori, Masataka;Kohno, Toshiyuki;Kanai, Tatsuaki;Hirai, Masaaki;Urakabe, Eriko;Nishio, Teiji
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.211-213
    • /
    • 2002
  • The purpose of this work is acquiring some parameters of therapeutic heavy ion beams after penetrating a thick target. The experiments were performed using a pencil-like $\^$12/C beam of about 3 mm in diameter from NIRS-HIMAC, and the data were taken at several points of the target thickness for $\^$12/C beam of 290 MeV/u and 400 MeV/u. By the simultaneous measurements using some detectors, the atomic number of each fragment particle was identified, and the beam profile, the dose distribution and the LET spectrum for each element were derived.

  • PDF

Molecular Dynamics (MD) Simulation of Ultra-shallow Ion Implantation with a Modified Recoil Ion Approximation

  • Ohseob Kwon;Kim, Kidong;Jihyun Seo;Taeyoung Won
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.735-738
    • /
    • 2003
  • In this paper, we report a molecular dynamics (MD) simulation of the ion implantation for nano-scale devices with ultra-shallow junctions. In order to model the profile of ion distribution in nanometer scale, the molecular dynamics with a damage model has been employed. As an exemplary case, we calculate the dopant profile during the ion implantation of B, As, and Ge.

  • PDF

Improvement of Mechanical Property by Single Ion Exchange Process in Substrate Glass

  • Lee, Hoi-Kwan;Kang, Won-Ho;Green, David J.
    • Journal of Information Display
    • /
    • 제4권3호
    • /
    • pp.12-16
    • /
    • 2003
  • In connection with the ion exchange strengthening on soda-lime-silicate, substrate glass for display use was investigated. In the processing, the temperature was varied during the ion exchange in order to make stress profile and to determine optimum condition. In the present work, we found that the maximum value of strength was 617.8 MPa after an ion exchange process at 470 $^{\circ}C$ for 1h, and then, at 450 $^{\circ}C$ for 24h. Also, the effect of residual stress placed on the near surface was measured by analyzing the number of crack branches and brittleness. This approach allowed us the residual stress profile to be engineered to improve mechanical reliability.

플라즈마 식각 시뮬레이션을 위한 스캔 방식의 이온 플럭스 계산 방법 (Scanning System Method for Calculating Ion Flux in Plasma Etching Simulation)

  • 신성식;유동훈;권오봉
    • 전자공학회논문지
    • /
    • 제50권10호
    • /
    • pp.124-131
    • /
    • 2013
  • 플라즈마(Plasma) 공정 시뮬레이션에서 가장 중요한 요소는 식각(Etching) 과정으로 특성 정보 프로파일(Feature Profile)에 의존하는 식각 비율(Etch Rate)을 계산하는 것이다. 식각 비율을 결정 요소는 이온 플럭스(Ion Flux), 뉴트럴 플럭스(Neutral Flux), 가스 종 온도 등 다양하지만 본 논문에서는 이온 플럭스(Ion Flux)에 한정하여 고속으로 이온 플럭스를 계산하기 위한 스캔 방법을 제안했다. 그리고 일반적으로 많이 사용되어지는 몬테카를로(Monte Carlo) 방법과 제안 방법을 가우시안 분포 및 코사인 분포를 이용하여 실험하고 서로 비교 분석하였다. 본 논문에서 제안한 방법이 몬테카를로 방법과 비교 했을 때 보다 효율적으로 정확한 이온 플럭스를 계산 할 수 있음을 검증하였다.

DEVELOPMENT OF A NEW ION TRANSPORT CODE FOR PLANETARY IONOSPHERES WITH EXPLICIT TREATMENT OF ION-ION COLLISION

  • KIM YONG HA
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.59-66
    • /
    • 2005
  • A new ion transport code for planetary ionospheric studies has been developed with consideration of velocity differences among ion species involving ion-ion collision. Most of previous planetary ionosphere models assumed that ions diffuse through non-moving ion and neutral background in order to consolidate continuity and momentum equations for ions into a simple set of diffusion equations. The simplification may result in unreliable density profiles of ions at high altitudes where ion velocities are fast and their velocity differences are significant enough to cause inaccuracy when computing ion-ion collision. A new code solves explicitly one-dimensional continuity and momentum equations for ion densities and velocities by utilizing divided Jacobian matrices in matrix inversion necessary to the Newton iteration procedure. The code has been applied to Martian nightside ionosphere models, as an example computation. The computed density profiles of $O^+,\;OH^+$, and $HCO^+$ differ by more than a factor of 2 at altitudes higher than 200 km from a simple diffusion model, whereas the density profile of the dominant ion, $O_2^+$, changes little. Especially, the density profile of $HCO^+$ is reduced by a factor of about 10 and its peak altitude is lowered by about 40 km relative to a simple diffusion model in which $HCO^+$ ions are assumed to diffuse through non-moving ion background, $O_2^+$. The computed effects of the new code on the Martian nightside models are explained readily in terms of ion velocities that were solved together with ion densities, which were not available from diffusion models. The new code should thus be expected as a significantly improved tool for planetary ionosphere modelling.

As이온이 주입된 Si의 구조적 특성 연구 (Study on Structural properties of As Ion -Implanted Si)

  • 믄영희;배인호;김말문;한병국;김창수;홍승수;신용현;정광화
    • 한국진공학회지
    • /
    • 제5권3호
    • /
    • pp.218-222
    • /
    • 1996
  • STrained layers and strain depth profile of high dose As ion implanted (100) si wafer annealed at various temperatures have been investigated by means of X-ray double crystal diffractometry (X-ray DCD). The results obtained by x-ray rocking curve analysis showed a defect layer at the original amorphous /crystalline interface of 1400$\AA$ depth. In addition arsenic ion concentrtion profiles and defect distributions in depth were obtained by the SIMS and TRIM -code simulation . the positive strain depth profile determined from the rocking curve analysis were only presented under 0.14 $\mu$m from the surface for samples ananelaed at $600^{\circ}C$. The results was shown that the thickness of amprphous layer is 0.14 $\mu$m indirectry, and it was good agreement with the TRIM -Code simulation. Additionally, it could be thought that the positive strain have been affected residual intersitial atoms under the amorphous/crystalline interface formed by ion implantation.

  • PDF

이온유체방정식을 이용한 Plasma Sheath 시변 해석 (Analysis of Time-Dependent Behavior of Plasma Sheath using Ion Fluid Model)

  • 이호준;이해준
    • 전기학회논문지
    • /
    • 제56권12호
    • /
    • pp.2173-2178
    • /
    • 2007
  • Dynamics of plasma sheath was analyzed using simple ion fluid model with poison equation. Incident ion current, energy, potential distribution and space charge density profile were calculated as a function of time. The effects of initial floating sheath on the evolution of biased sheath were compared with ideal matrix sheath. The effects of finite rising time of pulse bias voltage on the ion current and energy was studied. The influence of surface charging on the evolution of sheath was also investigated

Optimization of Etching Profile in Deep-Reactive-Ion Etching for MEMS Processes of Sensors

  • Yang, Chung Mo;Kim, Hee Yeoun;Park, Jae Hong
    • 센서학회지
    • /
    • 제24권1호
    • /
    • pp.10-14
    • /
    • 2015
  • This paper reports the results of a study on the optimization of the etching profile, which is an important factor in deep-reactive-ion etching (DRIE), i.e., dry etching. Dry etching is the key processing step necessary for the development of the Internet of Things (IoT) and various microelectromechanical sensors (MEMS). Large-area etching (open area > 20%) under a high-frequency (HF) condition with nonoptimized processing parameters results in damage to the etched sidewall. Therefore, in this study, optimization was performed under a low-frequency (LF) condition. The HF method, which is typically used for through-silicon via (TSV) technology, applies a high etch rate and cannot be easily adapted to processes sensitive to sidewall damage. The optimal etching profile was determined by controlling various parameters for the DRIE of a large Si wafer area (open area > 20%). The optimal processing condition was derived after establishing the correlations of etch rate, uniformity, and sidewall damage on a 6-in Si wafer to the parameters of coil power, run pressure, platen power for passivation etching, and $SF_6$ gas flow rate. The processing-parameter-dependent results of the experiments performed for optimization of the etching profile in terms of etch rate, uniformity, and sidewall damage in the case of large Si area etching can be summarized as follows. When LF is applied, the platen power, coil power, and $SF_6$ should be low, whereas the run pressure has little effect on the etching performance. Under the optimal LF condition of 380 Hz, the platen power, coil power, and $SF_6$ were set at 115W, 3500W, and 700 sccm, respectively. In addition, the aforementioned standard recipe was applied as follows: run pressure of 4 Pa, $C_4F_8$ content of 400 sccm, and a gas exchange interval of $SF_6/C_4F_8=2s/3s$.

동적 Range 검출에 의한 원료 Pile 형상 관리 시스템 (Profile Management System of Material Piles by Dynamic Range Finding)

  • 안현식
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.333-336
    • /
    • 2000
  • In this paper, a profile management system consisting of global and local range finders is presented for the automat ion of material pile handling. A global range finder detects range data of the front part of the piles of material and a profile map is obtained from a 3D profile detection algorithm. A local range finder attached on the side of the arm of the reclaimer detects range data with the handling function dynamically, and a local profile patch is acquired from the range data A yard profile map manager constructs a map by using the 3D profile of the global range finder and revises the map by replacing it with the local profile patch obtained Iron the local range finder. The developed vision system was applied to a simulator and the results of test show that it is appropriate to use for automating the material handling.

  • PDF