• Title/Summary/Keyword: ion exchange capacity

Search Result 390, Processing Time 0.025 seconds

Synthesis of Sulfonated PET-g-GMA Fine Ion-exchange Fibers for Water Treatment by Photopolymerization and Their Adsorption Properties for Metal Ions (광중합법을 이용한 수처리용 설폰산형 PET-g-GMA 극세 이온 교환 섬유의 합성 및 금속 이온 흡착 특성)

  • Kwak Noh-Seok;Hwang Taek-Sung;Kim Sun-Mi;Yang Yun-Kyu;Kang Kyung-Seok
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.397-403
    • /
    • 2004
  • The sulfonated PET-g-GMA ion-exchange fine fibers were synthesized by UV radiation-induced graft copolymerization using a photoinitiator, and their chemical structure and adsorption properties were investigated. The optimum values for synthetic conditions - UV intensity, reaction time, and reaction temperature were 450 W, 60 min, and $40^{\circ}C$, respectively. Maximum values of the degree of sulfonation and ion exchange capacity were 8.12 mmol/g and 3.25 meq/g, respectively. Tensile strength of sulfonated PET-g-GMA fine ion exchange fibers was lower than that of PET trunk polymer as the grafting reaction rates increased. It was shown that as for the adsorption rate of $Ca^{2+}$ and $Mg^{2+}$ by the sulfonated PET-g-GMA fine ion exchange fibers, magnesium ion is slower than calcium ion in the solution. However, in the mixture of the calcium and magnesium ions, the adsorption rate of calcium ion was much slower than that of magnesium ion.

Evaluation of Ammonia Adsorption Capacity Using Various Metal Ion-Exchanged Zeolitic Materials Synthesized from Coal Fly Ash (금속 이온이 교환된 석탄 비산재 유래 합성 제올라이트 물질의 암모니아 흡착성능 평가 )

  • Jong-Won Park;Joo-Young Kwak;Chang-Han Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.343-353
    • /
    • 2023
  • A zeolite material (ZCH) was synthesized from coal fly ash in an HD thermal power plant using a fusion/hydrothermal method. ZCH with high crystallinity could be synthesized at the NaOH/CFA ratio of 0.9. Ion-exchanged ZCH adsorbents for ammonia removal were prepared by ion-exchanging various cation (Cu2+, Co2+, Fe3+, and Mn2+) on the ZCH. They were used to evaluate the ammonia adsorption breakthrough curves and adsorption capacities. The ammonia adsorption capacities of the ZCH and ion-exchanged ZCHs were high in the order of Mn-ZCH > Cu-ZCH ≅ Co-ZCH > Fe-ZCH > ZCH according to NH3-TPD measurements. Mn-ZCH ion-exchanged with Mn has more Brønsted acid sites than other adsorbents. The ion-exchanged Cu2+, Co2+, Fe3+, or Mn2+ ions uniformly distributed on the surface or in the pores of the ZCH, and the number of acidic sites increased on the alumina sites to form the crystal structure of zeolite material. Therefore, when the ion-exchanged ZCH was used, the adsorption capacity for ammonia gas increased.

Synthesis and Characteristics of Partially Fluorinated Poly(vinylidene fluroide)(PVDF) Cation Exchange Membrane via Direct Sulfonation (직접술폰화반응에 의한 부분불소화 Poly(vinylidene fluroide)(PVDF) 양이온교환막의 합성 및 특성)

  • Kang, Ki Won;Hwang, Taek Sung
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.406-414
    • /
    • 2015
  • In this study, partially fluorinated cation exchange membranes were prepared by direct sulfonation of Poly(VDF-co-hexafluoropropylene) copolymers (PVDF-co-HFP) followed by a casting method for application in the Membrane capacitive deionization (MCDI). The structure of sulfonated PVDF-co-HFP (SPVDF) was confirmed by Fourier-transform infrared (FT-IR) and $^1H$ Nuclear magnetic resonance ($^1H$ NMR) analysis. For quantitative analysis of the chemical composition, the X-ray Photoelectron Spectroscopy (XPS) was used. The membrane properties such as water uptake, ion exchange capacity and electrical resistance were measured. It was suggested that the optimum direct sulfonation condition of PVDF-co-HFP ion exchange membranes was $60^{\circ}C$ and 7 hours for temperature and duration of sulfonation, respectively. The water uptake of the SPVDF ion exchange membrane was 21.5%. The ion exchange capacity and electrical resistance were 0.89 meq/g and $3.70{\Omega}{\cdot}cm^2$, respectively. It was investigated that if it is feasible to apply these membranes in MCDI at various cell potentials (0.9~1.5 V) and initial flow rates (10~40 mL/min). In the MCDI process, the maximum salt removal rate was 62.5% in repeated absorption-desorption cycles.

Synthesis of New Triazacrown Ion Exchanger and Its Ion Exchange Characteristics (새로운 트리아자크라운 이온교환체의 합성과 그의 이온교환 특성)

  • Kim, Dong Won;Chung, Yong Soon;Kim, Chang Suk;Choi, Ki Young;Lee, Yong Ill;Hong, Choon Pyo
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.5
    • /
    • pp.371-378
    • /
    • 1995
  • The triazacrown compound, 1,7-dioxa-4,10,13-triazacyclopentadecane trihydrobromide salt (Na3O2-3HBr) was synthesized. And this compound was used to synthesize the new ion exchanger, which combined with Merrifield peptide resin. This new ion exchanger had a capacity of 3.2 meq/g dry resin. And the distribution coefficients of alkali and alkaline earth metal ions on this ion exchanger in the various concentrations of hydrochloric acid were determined. The ion exchange behaviors of alkali and alkaline earth metal ions in the various hydrochloric acid concentrations are, also, discussed.

  • PDF

Synthesis of Aminated PP-g-styrene Fibrous Ion-Exchanger for Separation of Boron from Ground-Water (지하수로부터 붕소이온 분리를 위한 아민화 PP-g-styrene 이온교환체 섬유의 합성과 붕소 음이온 흡착에 관한 연구)

  • Hwang, Taek-Sung;Lee, Jin-Hyok;Lee, Myun-Joo
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.451-459
    • /
    • 2001
  • Fabric ion-exchanger, aminated PP-g-styrene was synthesized with styrene monomer onto PP staple fiber by pre-irradiational grafting with E-beam and subsequent chloromethylation and amination. Degree of grafting was increased with increasing the styrene monomer concentration and the highest degree of grafting was obtained 118% at a monomer concentration of 80% styrene. Optimum condition of Mohr's salt and sulphuric acid were 1.0 ${\times}\;10^{-3}$ M and 0.1 M. Amount of amination was increased with increasing degree of grafting. Swelling ratio of aminated PP-g styrene was higher than that of trunk polymer. Ion-exchange capacity was 6.7 meq/g, which was three times greater than commercial ion-exchanger. Optimum condition of baron ion adsorption was pH 4 and amount of adsorption were increased with increasing the amount of amination.

  • PDF

Synthesis and Characterization of IPA-co-HDO-co-(TPA/MA) Anion-Exchange Membrane for All-Vanadium Redox Flow Battery (전바나듐계 레독스-흐름 전지용 IPA-co-HDO-co-(TPA/MA) 음이온교환막의 합성 및 특성)

  • Jung, Jae-Chul;Kwak, Noh-Seok;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.593-598
    • /
    • 2011
  • The IPA-co-HDO-co-(TPA/MA) copolymers for all-vanadium redox flow battery were synthesized by melt condensation polymerization using isophthalic acid(IPA), 1,6-hexandiol (HDO), terephthalic acid(TPA) and maleic anhydride(MA). The amination of chloromethylated IPA-co- HDO-co-(TPA/MA)(CIHTM) copolymer was carried out using trimethylamine, and the anion exchange membrane was also prepared by UV crosslinking reaction. The structure and thermal stability of IHTM copolymers were confirmed by FTIR, $^1H$ NMR, and TGA analysis. The anion membrane properties such as water uptake, ion exchange capacity, electric resistance and electrical conductivity, were measured by gravimetry, titration and LCR meter. The efficiency of the all-vanadium redox flow battery was analyzed. The ion exchange capacity, electric resistance and electrical conductivity were 1.10 meq/g, $1.98{\Omega}{\cdot}cm^2$, and 0.009 S/cm, respectively. The efficiency of charge-discharge, voltage, and energy for the allvanadium redox flow battery were 96.5, 74.6, 70.0%, respectively.

Structural Studies in Anion Exchange Membrane Prepared by Vinyl Benzyl Chloride and its Electrochemical Properties (Vinyl Benzyl Chloride로 제조된 음이온 교환막의 구조적 고찰 및 전기화학적 특성)

  • Song, JeeHye;Seo, BongKuk;Choi, YongJin
    • Membrane Journal
    • /
    • v.25 no.4
    • /
    • pp.310-319
    • /
    • 2015
  • Three kinds of anion-exchangeable functional groups with different hydrocarbon molecular structures were introduced to vinyl benzyl chloride-based membrane to understand the effect of attached function in anion-exchange membrane. Trimethylamine (TMA) as an aliphatic fuction, N-methylpiperidine (MP) as an alicyclic fuction and pyridine (Py) as an aromatic function were introduced by amination. The respective reactivity was observed by the trace of membrane resistance( MER)/ion exchange capacity (IEC) and the increasing order of reactivity was Py < MP < TMA. Meanwhile, SEM photograph showed the attached Py ion-exchange membrane was the most homogenous and compact structure in the study. In electrochemical properties, the attached Py ion-exchange membrane showed the MER ($5.0{\Omega}{\cdot}cm^2$ >, in 0.5 mol/L NaCl), comparable to those of commercial membrane (AMX). All results showed that the resonance structure of attached functional group might contribute to the preparation of homogenous anion-exchange membrane.

Preparation and Characteristics of Heterogeneous Cation Exchange Membrane : 1. Mixing Ratio of Matrix and Ion Exchange Resin (PE계 불균질 양이온 교환막의 제조와 특성:1.결합제와 이온교환수지의 비율에 따른 영향)

  • Yang, Hyun S.;Cho, Byoung H.;Kang, Bong K.;Lee, Tae W.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1132-1141
    • /
    • 1996
  • Heterogeneous cation exchange membrane(HCEM) was prepared with LLDPE(Linear Low Density Poly-ethylene) as binder, powdered cation exchange resins($diameter{\leq}149{\mu}m$) as ion-exchange material and glycerol as additive for electrodialysis and electrodeionization system. The weight ratio of (binder/ion exchange)/glycerol was (60%/40%)/5%, (55%/45%)/5%, (50%/50%)/5% and (40%/60%)/5%. The characterization of prepared HCEM was evaluated on mechanical, electrochemical, morphology and ion permeable properties. It was compared with commercial membrane. Electrochemical properties of HCEM of (50%/50% )/5% were very similar to value of IONPURE(commercial membrane), in which ion exchange capacity, ion transfer number and membrane resistance were to be 1.733meq/g, 0.96 and $16.08{\Omega}/cm^2$, respectively. Ion permeability of the membrane was better than that of IONPURE membrane. Compared with IONPURE membrane, the HCEM had a higher tensile strength and lower elongation and modulus, in which HCEM had tensile strength of $62.33kg/cm^2$, elongation of 87.42% and modulus of $658.53kg/cm^2$. The HCEM of (50%/50% )15% was optimum combination.

  • PDF

Characteristics of Ion Exchange of Phosphate using Layered Double Hydroxides in Advanced Wastewater Treatment (하수고도처리에서 층상이중수화물을 이용한 인산 이온교환 특성)

  • Song, Ji-Hyun;Shin, Seung-Kyu;Lee, Sang-Hyup;Park, Ki-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.991-995
    • /
    • 2006
  • The layered double hydroxide with the insertion of chloride ions (LDH-Cl), which was synthesized by the co-precipitation method, was applied to investigate the fundamental aspects of the absorptive agent for phosphate removal from wastewater. The adsorption capacity was best described by the Langmuir-FreundIich isotherm, and the estimated isotherm parameters indicate that the LDH-CI capacity for the phosphate removal is much higher than that observed using a natural adsorbent material such iron oxide tailing. The kinetic experiment also showed that the LDH-Cl adsorption reaction rapidly at the adsorptive rate of 0.55 mg-P/g-LDH/min, implying that this adsorbent can be of use in the full-scale applications. The pH had a minimal effect on the LDH adsorption capacity in the range of 5 to 11, although the capacity dropped at the low pHs because of the change in LDH surface properties. Furthermore, other anions such as $Cl^-$ and $NO_3{^-}$ commonly found in the wastewater streams insignificantly affected the phosphate removal efficiencies, while $HCO_3{^-}$ ions had a negative effect on the LDH adsorption capacity due to its high selectivity. The phosphate removal experiment using the actual secondary effluent from a wastewater treatment plant showed the similar decrease in adsorption capacity, indicating that the bicarbonate ions in the wastewater were competing with phosphate for the adsorptive site in the surface of the LDH-Cl. Overall, the synthetic adsorbent material, LDH-Cl, can be a feasible alternative over other conventional chemical agents, since the LDH-Cl exhibits the high phosphate removal capacity with the low sensitivity to other environmental conditions.

Characteristics of the Electrochemical Ion Exchanger for the Treatment of Cations in Nuclear Wastewater (원자력 폐수의 양이온 처리를 위한 전기화학적 이온교환체의 특성)

  • Hwang, Young-Gi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.4
    • /
    • pp.176-184
    • /
    • 2016
  • Electrochemical ion exchange method is expected to be one of the most acceptable techniques for the separation of radioactive cations from nuclear wastewater. In this study a thin film of hexacyanoferrate on nickel surface was derivatized chemically in an aqueous potassium-ferricyanide solution. Electrochemical redox behavior of the nickel hexacyanoferrate(NiHCNFe) film electrode was investigated with the use of cyclic voltammetry potentiostated from -100 to 800 mV versus SCE. The electro-reduction characteristics of the NiHCNFe film were examined in the cobalt solutions. The NiHCNFe ion exchanger was more useful at lower concentration, lower temperature, and pH7 of the cobalt solution. The capacity loss of NiHCNFe was 0.018%/cycle that was less than the average loss of 2~3%/cycle of the convective organic exchanger. The 45~55% of the initial cobalt ions was electro-deposited on the NiHCNFe by using continuous recirculating reactor system. As a result, it was found that the electroactive NiHCNFe films showed better performance than the organic resins for the separation of cobalt ion from the aqueous solutions.