• Title/Summary/Keyword: ion effect

Search Result 3,316, Processing Time 0.032 seconds

Kinetics of Base Hydrolysis of Some Chromen-2-one Indicator Dyes in Different Solvents at Different Temperatures (여러 온도 및 용매 하에서 수행된 chromen-2-one 지시약 염료들의 염기성 가수분해 반응에 대한 속도론적 연구)

  • Abu-Gharib, Ezz A.;EL-Khatib, Rafat M.;Nassr, Lobna A.E.;Abu-Dief, Ahmed M.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.346-353
    • /
    • 2011
  • Base hydrolysis of 7-hydroxy-2H-chromen-2-one (HC) and 7-hydroxy-2H-chromen-2-one-4-acetic acid (HCA) in aqueous-methanol and aqueous-acetone mixtures were studied kinetically at temperature range from 283 to 313 K. The activation parameters of the reactions were evaluated and discussed. Moreover, the change in the activation energy barrier of the investigated compounds from water to water-methanol and water-acetone mixtures was estimated from the kinetic data. It is observed that the change in activation barriers is more or less the same for the hydrolysis of HC and HCA. Base hydrolysis of HC and HCA follows a rate law with $k_{obs}=k_2[OH^-]$. The decrease in the rate constants of HC and HCA as the proportion of methanol or acetone increases is due to the destabilization of $OH^-$ ion. The high negative values of entropy of activation support the proposal mechanism, i.e. the investigated reaction takes place via the formation of an intermediate complex. Moreover, these values refer to the rigidity and stability of the intermediate complex. Thus, the ring opening of the intermediate complex would be the rate controlling step.

The Pressure Effect of the Association of 2,4,6,N-Tetramethyl Pyridinium Iodide in Ethanol-Water Mixture (에탄올-물 혼합용매내에서 2,4,6,N-Tetramethyl Pyridinium Iodide의 회합에 대한 압력효과)

  • Jung-Ui Hwang;Jong-Gi Jee;Young-Hwa Lee;Uei-Ha Woo
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.79-85
    • /
    • 1984
  • The ionic association constant(K) of 2,4,6, N-tetramethyl pyridinium iodide (TeMPI) in 95 volume percentage ethanol-water mixture were determined by a modified UV and conductance method at $25^{\circ}C$ to $50^{\circ}C$ under 1 to 2,000 bars. The K values increase with increasing pressure and have maximum value at $40^{\circ}C$. The partial molar volume hange (${\Delta}V$) has relatively small negative value and the absolute values of ${\Delta}$ are minimum at $40^{\circ}C$. The ion size parameter(a) of TeMPI have maximum value at $40^{\circ}C$. {\Delta}H^{\circ}$ values are zero, positive and negative at 40^{\circ}C$, $25^{\circ}C$ and $50^{\circ}C$ respectively. Other thermodynamic parameters such as the changes of standard entropy ({\Delta}S^{\circ}$) and free energy {\Delta}G^{\circ}$ were evaluated. From these experimental results, we came to conclusion that TeMPI is stabilized by the elevation of pressure and that of temperature below $40^{\circ}C$ but weakly dimerized at $40^{\circ}C$ because of the intermolecular hydrophobic interaction of eight methyl groups of two molecules. And it thermally decomposed above $50^{\circ}C$.

  • PDF

Effect of surface damage remove etching of Reactive Ion Etching for Crystalline silicon solar cell

  • Park, Jun-Seok;Byeon, Seong-Gyun;Park, Jeong-Eun;Lee, Yeong-Min;Lee, Min-Ji;Im, Dong-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.404-404
    • /
    • 2016
  • 태양전지 제작 시 표면에 피라미드 구조를 형성하면 입사되는 광의 흡수를 높여 광 생성 전류의 향상에 기여한다. 일반적인 KOH를 이용한 습식 표면조직화 공정은 평균 10%의 반사율을 보였으며, 유도 결합 플라즈마를 이용한 RIE 공정은 평균 5.4%의 더 낮은 반사율을 보였다. 그러나 RIE 공정을 이용한 표면조직화는 낮은 반사율과 서브 마이크론 크기의 표면 구조를 만들 수 있지만 플라즈마 조사에 의한 표면 손상이 많이 발생하게 된다. 이러한 표면 손상은 태양전지 제작 시 표면에서 높은 재결합 영역으로 작용하게 되어 포화 전류(saturation currents, $J_0$)를 증가시키고 캐리어 수명(carrier lifetime, ${\tau}$)을 낮추는 결함 요소로 작용한다. 이러한 플라즈마에 의한 표면 손상을 제거하기 위해 HF, HNO3, DI-water를 이용하여 DRE(Damage Remove Etching) 공정을 진행하였다. DRE 공정은 HF : DI-water 솔루션과 HNO3 : HF : DI-water 솔루션의 두 가지 공정을 이용하여 공정 시간을 가변하며 진행하였다. 포화전류($J_0$), 캐리어 수명(${\tau}$), 벌크 캐리어 수명(Bulk ${\tau}$)을 비교를 하기위해 KOH, RIE, RIE + DRE 공정을 진행한 세 가지 샘플로 실험을 진행하였다. DRE 공정을 적용할 경우 공정 시간이 지날수록 반사도가 높아지는 경향을 보였지만, 두 번째의 최적화된 솔루션 공정에서 $2.36E-13A/cm^2$, $42{\mu}s$$J_0$, Bulk ${\tau}$값과 가장 높은 $26.4{\mu}s$${\tau}$를 얻을 수 있었다. 이러한 결과는 오제 재결합(auger recombination)이 가장 많이 발생하는 지역인 표면과 불균일한 도핑 영역에서 DRE 공정을 통해 나아진 표면 특성과 균일한 도핑 프로파일을 형성하게 되어 재결합 영역과 $J_0$가 감소 된 것으로 판단된다. 높아진 반사도의 경우 $SiN_x$를 이용한 반사방지막을 통해 표면 반사율을 1% 이내로 내릴 수 있어 보완이 가능하였다. 본 연구에서는 RIE 공정 중 플라즈마에 의해 발생하는 표면 손상 제거를 통하여 캐리어 라이프 타임의 향상된 조건을 찾기 위한 연구를 진행하였으며, 기존 RIE 공정에 비해 반사도의 상승은 있지만 플라즈마로 인한 표면 손상을 제거하여 오제 재결합에 의한 발생하는 $J_0$를 낮출 수 있었고 높은 ${\tau}$값인 $26.4{\mu}s$의 결과를 얻어 추후 태양전지 제작에 향상된 효율을 기대할 수 있을 것으로 기대된다.

  • PDF

Culture Conditions of E. coli CK1092 for the Production of 2,3-Dihydroxybiphenyl Dioxygenase (2,3-Dihydroxybiphenyl Dioxygenase 생산을 위한 E. coli CK1092의 배양조건)

  • Lee, Jung-Young;Kim, Youngsoo;Lee, Ki-Sung;Min, Kyung-Hee;Kim, Young-Chang;Kim, Chi-Kyung;Lim, Jai-Yun
    • Korean Journal of Microbiology
    • /
    • v.34 no.1_2
    • /
    • pp.20-25
    • /
    • 1998
  • To obtain higher yield of 2,3-dihydroxybiphenyl(2,3-DHBP) dioxygenase by recombinant E. coli CK1092 carrying pcbC gene of Pseudomonas sp. P20, the environmental and physiological factors were investigated and the cultural conditions using jar fermentor were studied. E. coli CKl092 was grown in LB medium supplemented with 2% sucrose, as a basal medium. The effect of various metal ions on the enzyme production was investigated. In particular, the enzyme production increased in the presence of $Fe^{3+}$ and $Fe^{2+}$, and showed the maxium at the concentration of $10^{-5}M$. The enzyme production was increased by 55% in the medium containing $Fe^{3+}$ ($10^{-5}M$) ion. The optimal temperature and initial pH for cell growth were $37^{\circ}C$ and 7.0, respectively. In the culture using a fermentor at $37^{\circ}C$, the optimal conditions for the enzyme production were obtained at the initial pH 7.0, 1 v/v/m of aeration rate, 200 rpm of agitation speed. It was found that enzyme activity was higher when cultivated without pH control than with pH control.

  • PDF

Al2O3 High Dense Single Layer Gas Barrier by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Seong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.157-157
    • /
    • 2015
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}g/m^2day$. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2day$) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study NBAS process was introduced to deposit enhanced film density single gas barrier layer with a low WVTR. Fig. 1. shows a schematic illustration of the NBAS apparatus. The NBAS process was used for the $Al_2O_3$ nano-crystal structure films deposition, as shown in Fig. 1. The NBAS system is based on the conventional RF magnetron sputtering and it has the electron cyclotron resonance (ECR) plasma source and metal reflector. $Ar^+$ ion in the ECR plasma can be accelerated into the plasma sheath between the plasma and metal reflector, which are then neutralized mainly by Auger neutralization. The neutral beam energy is controlled by the metal reflector bias. The controllable neutral beam energy can continuously change crystalline structures from an amorphous phase to nanocrystal phase of various grain sizes. The $Al_2O_3$ films can be high film density by controllable Auger neutral beam energy. we developed $Al_2O_3$ high dense barrier layer using NBAS process. We can verified that NBAS process effect can lead to formation of high density nano-crystal structure barrier layer. As a result, Fig. 2. shows that the NBAS processed $Al_2O_3$ high dense barrier layer shows excellent WVTR property as a under $2{\times}10^{-5}g/m^2day$ in the single barrier layer of 100nm thickness. Therefore, the NBAS processed $Al_2O_3$ high dense barrier layer is very suitable in the high efficiency OLED application.

  • PDF

Characteristics of graphene sheets synthesized by the Thermo-electrical Pulse Induced Evaporation (전계 펄스 인가 증발 방법을 이용한 그라핀의 특성 연구)

  • Park, H.Y.;Kim, H.W.;Song, C.E.;Ji, H.J.;Choi, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.412-412
    • /
    • 2009
  • Carbon-based nano materials have a significant effect on various fields such as physics, chemistry and material science. Therefore carbon nano materials have been investigated by many scientists and engineers. Especially, since graphene, 2-dimemsonal carbon nanostructure, was experimentally discovered graphene has been tremendously attracted by both theoretical and experimental groups due to their extraordinary electrical, chemical and mechanical properties. Electrical conductivity of graphene is about ten times to that of silicon-based material and independent of temperature. At the same time silicon-based semiconductors encountered to limitation in size reduction, graphene is a strong candidate substituting for silicon-based semiconductor. But there are many limitations on fabricating large-scale graphene sheets (GS) without any defect and controlling chirality of edges. Many scientists applied micromechanical cleavage method from graphite and a SiC decomposition method to the fabrication of GS. However these methods are on the basic stage and have many drawbacks. Thereupon, our group fabricated GS through Thermo-electrical Pulse Induced Evaporation (TPIE) motivated by arc-discharge and field ion microscopy. This method is based on interaction of electrical pulse evaporation and thermal evaporation and is useful to produce not only graphene but also various carbon-based nanostructures with feeble pulse and at low temperature. On fabricating GS procedure, we could recognize distinguishable conditions (electrical pulse, temperature, etc.) to form a variety of carbon nanostructures. In this presentation, we will show the structural properties of OS by synthesized TPIE. Transmission Electron Microscopy (TEM) and Optical Microscopy (OM) observations were performed to view structural characteristics such as crystallinity. Moreover, we confirmed number of layers of GS by Atomic Force Microscopy (AFM) and Raman spectroscopy. Also, we used a probe station, in order to measure the electrical properties such as sheet resistance, resistivity, mobility of OS. We believe our method (TPIE) is a powerful bottom-up approach to synthesize and modify carbon-based nanostructures.

  • PDF

Design and operational characteristics of cw and KLM Ti : sapphire lasers with a symmetric Z-type cavity configuration (Z-형태의 대칭형 레이저 공진기 구조를 갖는 연속 발진 및 Kerr-렌즈 모드-록킹되는 티타늄 사파이어 레이저의 설계와 동작 특성)

  • Choo, Han-Tae;Ahn, Bum-Soo;Kim, Gyu-Ug;Lee, Tae-Dong;Yoon, Byoung-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.347-355
    • /
    • 2002
  • We have constructed a high efficiency and broad tunable cw Ti:sapphire laser with a four-mirror symmetric Z-type laser cavity to increase the laser usability. From theoretical analyses and experimental data for a symmetric Z-type laser cavity containing a Kerr medium, the cavity mode size and the Kerr-lens mode-locking (KLM) strength for KLM lasers can be confirmed as function of the position in the cavity, the intracavity laser power, and the stability parameter. As a result, the slope efficiency and the maximum average output power of cw Ti:sapphire laser at 5 W pumping power of Ar-ion laser were 31.3% and 1420 ㎽ respectively. The tunablility was ranged from 730 ㎚ to 908 ㎚ with average output power above 700 ㎽. We obtained the KLM operation easily by self-aperturing effect in the Kerr medium and the slope efficiency and the maximum average output power of KLM Ti:sapphire laser was 16% and 550 ㎽ respectively. The spectral bandwidth was 33 ㎚ at the center wavelength of 807 ㎚ and the pulse width was 27 fs with a repetition rate of 82 ㎒.

Bromate Formation by Ozonation Process and It′s Effect on Renal Toxicity in rat (오존처리에 의한 Bromate의 생성 및 흰쥐의 신장독성에 미치는 영향)

  • 정운용;이무강;최종원
    • Journal of Life Science
    • /
    • v.12 no.4
    • /
    • pp.442-451
    • /
    • 2002
  • In oder to investigate the effects of pH and temperature on the formation of bromate ion, which is ozonation by-products of bromine containing natural water. At the same intial pH condition, the increase of pH shown similar trends even if the reaction variables such as temperature and reaction time of ozonation were changed. As pH and temperature were increasing, the bromate concentration was increased but bromine components (HOBr/OBr-) were decreased with increasing pH from 3 to 10. Lipid peroxide content in the kidney was increased by bromate which was ingestion with 0.4g/L for 24 weeks in drinking water. Renal cytosolic enzyme system (XO, AO) of bromate group were significantly increased in comparison with those of normal group. But microsomal enzyme system were not affected. BUN level and urinary ${\gamma}$-glutamyltransferase activity were significantly increased in comparison with those of the normal. But, urinary lactate dehydrogenase activity was not affected. Renal glutathione content of rat was significantly decreased in comparison with those of normal rat given bromate. Renal glutathione S-transferase and ${\gamma}$-glutamylcysteine synthetase activities were significantly decreased in bromate-treated group, but change in renal glutathione reductase activity was not significantly different from any other experimental group.

Transglucosylation to Stevioside by Cyclodextrin Glucanotransferase from Bacillus sp. (Bacillus속이 생산하는 Cyclodextrin Glucanotransferase에 의한 Stevioside로의 당전이반응)

  • Chun, Sung-Sook;Cho, Young-Je
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.41-48
    • /
    • 2004
  • Cyclodextrin glucanotransferase (CGTase) of Bacillus sp. isolated from soil was purified and its enzymological characteristics were investigated. It was found that the production of CGTase reached to the maximum when the strain was cultured in the broth containing 0.1 % albumin, 2% $NH_4Cl$, 2% soluble starch and 0.2% $NH_2PO_4$ for 72 hrs at $37^{\circ}C$. The purity of CGTase was increased by 9.7 folds through purification procedures by the following column chromatography DEAE-cellulose ion exchange chromatography and Sephadex G-100, G-150 gel filtration and its specific activity was 528.0 unit/mg. The optimum pH and temperature for the CGTase activity were 8.0 and $80^{\circ}C$, respectively. The enzyme was stable in pH $8.0{\sim}11.0$ at $60{\sim}80^{\circ}C$. The activity of purified enzyme was inhibited by $Pb^{2+},\;Hg^{2+}$ and $Zn^{2+}$. When CGTase was treated with each 20.5 unit, 41 unit, 205 unit and 410 unit to investigate the transglucosylation to stevioside by purified cyclodextrin glucanotransferase, transglucosylation rate to stevioside was 74.9%, 75.7%, 68.7% and 57.9%. Brown effect was observed above the concentration amounting to 205 unit of our CGTase.

Synthesis and characterization of LiMn1.5Ni0.5O4 powders using polymerization complex method (착체중합법을 이용한 LiMn1.5Ni0.5O4 분말합성 및 특성평가)

  • Sin, Jae-Ho;Kim, Jin-Ho;Hwang, Hae-Jin;Kim, Ung-Soo;Cho, Woo-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.194-199
    • /
    • 2012
  • The $LiMn_{1.5}Ni_{0.5}O_4$, substituting a part of Mn with Ni in the $LiMn_2O_4$, the spinel structure has good charge-discharge cycle stability and high discharge capacity at 4.7 V. In this study $LiMn_{1.5}Ni_{0.5}O_4$ powders were synthesized by polymerization complex method. The effect on the characteristics of synthesized $LiMn_{1.5}Ni_{0.5}O_4$ powders was studied with citric acid (CA) : metal ion (ME) molar ratio (5 : 1, 10 : 1, 15 : 1, 30 : 1) and calcination temperature ($500{\sim}900^{\circ}C$). Single phase of $LiMn_{1.5}Ni_{0.5}O_4$ was observed from XRD analysis on the powders calcined at low ($500^{\circ}C$) and high temperatures ($900^{\circ}C$). The crystalline size and crystallinity increased with calcination temperature. At low calcination temperature the particle size decreased and specific surface area increased as the CA molar ratio increased. On the other hand, high particle growth rate at high calcination temperature interfered the particle size reduction and specific surface area increase induced by the increase of CA molar ratio.