• 제목/요약/키워드: ion beam methods

검색결과 141건 처리시간 0.024초

Nanohole Fabrication using FIB, EB and AFM for Biomedical Applications

  • Zhou, Jack;Yang, Guoliang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권4호
    • /
    • pp.18-22
    • /
    • 2006
  • Although many efforts have been made in making nanometer-sized holes, there is still a major challenge in fabricating individual single-digit nanometer holes in a more controllable way for different materials, size distribution and hole shapes. In this paper we describe our efforts to use a top down approach in nanofabrication method to make single-digit nanoholes. There are three major steps towards the fabrication of a single-digit nanohole. 1) Preparing the freestanding thin film by epitaxial deposition and electrochemical etching. 2) Making sub-micro holes ($0.2{\mu}\;to\;0.02{\mu}$) by focused ion beam (FIB), electron beam (EB), atomic force microscope (AFM), and others methods. 3) Reducing the hole size to less than 10 nm by epitaxial deposition, FIB or EB induced deposition and micro coating. Preliminary work has been done on thin films (30 nm in thickness) preparation, sub-micron hole fabrication, and E-beam induced deposition. The results are very promising.

Nano 스케일 부품 제조용 In-Line 시스템의 특허동향 분석에 관한 연구 (Research for Patent Application Tendency in the In-Line System Manufacturing for Component of Nano Scale)

  • 김성민;고준빈;박희상
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.150-158
    • /
    • 2008
  • This research considered that the significance of the NT(Nano Technology) which gradually increased the importance of it and investigated the technology development current situation of the Korea, U.S.A, Japanese, Europe. Therefore, in domestic and foreign, this research was widely used. It includes the tendency of the technology about processing methods using the ion beam and electron beam among the In-line system related technique field for the high efficiency energy beam application nano scale manufacturing components. The technique level of Korea, the international trend of technology and cooperation research present condition are dealt in. The information about the checked out of business of research and development of the country consistency and policy establishment try to be provided.

Liquid Crystal Orientation Properties on Homogeneous Polymer Surface by Various Alignment Methods

  • Kim, Young-Hwan;Lee, Kang-Min;Kim, Byoung-Yong;Oh, Byeong-Yun;Han, Jeong-Min;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권1호
    • /
    • pp.16-19
    • /
    • 2009
  • We have studied the liquid crystal alignment properties for various alignment methods on the homogeneous polyimide surface. Suitable liquid crystal alignment for one-side alignment cell on the polyimide surface by all alignment method was observed. Highly pre-tilt angle of the NLC for both-side rubbing cell was measured. But, low pre-tilt angle of the NLC for one-side ion beam and UV irradiation cell was observed. We consider that the pre-tilt angle of NLC for one-side ion beam and UV irradiation on the PI surface is lower than that of the PI surface with rubbing. Also, the suitable transmittance-voltage curves for the one-side rubbing TN-LCD on the PI surface with one-side UV irradiation were measured. Also, good response time characteristics of the one-side rubbing TN-LCD on the polyimide surface with one-side UV irradiation can be measured.

High-Dose-Rate Electron-Beam Dosimetry Using an Advanced Markus Chamber with Improved Ion-Recombination Corrections

  • Jeong, Dong Hyeok;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Jang, Kyoung Won
    • 한국의학물리학회지:의학물리
    • /
    • 제31권4호
    • /
    • pp.145-152
    • /
    • 2020
  • Purpose: In ionization-chamber dosimetry for high-dose-rate electron beams-above 20 mGy/pulse-the ion-recombination correction methods recommended by the International Atomic Energy Agency (IAEA) and the American Association of Physicists in Medicine (AAPM) are not appropriate, because they overestimate the correction factor. In this study, we suggest a practical ion-recombination correction method, based on Boag's improved model, and apply it to reference dosimetry for electron beams of about 100 mGy/pulse generated from an electron linear accelerator (LINAC). Methods: This study employed a theoretical model of the ion-collection efficiency developed by Boag and physical parameters used by Laitano et al. We recalculated the ion-recombination correction factors using two-voltage analysis and obtained an empirical fitting formula to represent the results. Next, we compared the calculated correction factors with published results for the same calculation conditions. Additionally, we performed dosimetry for electron beams from a 6 MeV electron LINAC using an Advanced Markus® ionization chamber to determine the reference dose in water at the source-to-surface distance (SSD)=100 cm, using the correction factors obtained in this study. Results: The values of the correction factors obtained in this work are in good agreement with the published data. The measured dose-per-pulse for electron beams at the depth of maximum dose for SSD=100 cm was 115 mGy/pulse, with a standard uncertainty of 2.4%. In contrast, the ks values determined using the IAEA and AAPM methods are, respectively, 8.9% and 8.2% higher than our results. Conclusions: The new method based on Boag's improved model provides a practical method of determining the ion-recombination correction factors for high dose-per-pulse radiation beams up to about 120 mGy/pulse. This method can be applied to electron beams with even higher dose-per-pulse, subject to independent verification.

Nano Patterning on Graphite by Ion-Beam Sputtering

  • Yoon, Sun Mi;Kim, J.S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.214-214
    • /
    • 2013
  • Ion beam sputtering (IBS) by collision of energetic ions at surfaces is one of the representative methods for physical self-assembly. It is in spotlight as an easy tool to make nano structures in various sizes and shapes by controlling physical variablesWe investigate nano patterning on graphite. We found well-ordered nano ripple patterns after sputtering under the oblique angle and mean wavelengths of these ripples could be controlled as ion fluence increases from sub-10 nm to 80 nm. Each nano ripple is terminated by nano buds, which look like a cotton bud. We also examined the formation of various patterns on graphite by sputtering during swinging the sample at a constant angular velocity that have been never reported.

  • PDF

반도체 제조 이온주입 공정의 이온 임플란타 장치에서 엑스레이 발생 특성 (Characterization of X-ray Emitted in the Ion Implantation Process of Semiconductor Operations)

  • 박동욱;조경이;김소연;이승희;정은교
    • 한국산업보건학회지
    • /
    • 제33권4호
    • /
    • pp.439-446
    • /
    • 2023
  • Objectives: The aims of this study are to investigate how X-rays are emitted to surrounding parts during the ion implantation process, to analyze these emissions in relation to the properties of the ion implanter equipment, and to estimate the resulting exposure dose. Eight ion implanters equipped with high-voltage electrical systems were selected for this study. Methods: We monitored X-ray emissions at three locations outside of the ion implanters: the accelerator equipped with a high-voltage energy generator, the impurity ion source, and the beam line. We used a Personal Portable Dose Rate and Survey Meter to monitor real-time X-ray levels. The SX-2R probe, an X-ray Features probe designed for use with the RadiagemTM meter, was also utilized to monitor lower ranges of X-ray emissions. The counts per second (CPS) measured by the meter were estimated and then converted to a radiation dose (𝜇Sv/hr) based on a validated calibration graph between CPS and μGy/hr. Results: X-rays from seven ion implanters were consistently detected in high-voltage accelerator gaps, regardless of their proximity. X-rays specifically emanated from three ion implanters situated in the ion box gap and were also found in the beam lines of two ion implanters. The intensity of these X-rays did not show a clear pattern relative to the devices' age and electric properties, and notably, it decreased as the distance from the device increased. Conclusions: In conclusion, every gap, in which three components of the ion implanter devices were divided, was found to be insufficiently shielded against X-ray emissions, even though the exposure levels were not estimated to be higher than the threshold.

Testing of the permeability of concrete box beam with ion transport method in service

  • Wang, Jia Chun
    • Computers and Concrete
    • /
    • 제15권3호
    • /
    • pp.461-471
    • /
    • 2015
  • The permeability is the most direct indicator to reflect the durability of concrete, and the testing methods based on external electric field can be used to evaluate concrete permeability rapidly. This study aims to use an experiment method to accurately predict the permeability of concrete box beam during service. The ion migration experiments and concrete surface resistivity are measured to evaluate permeability of five concrete box beams, and the relations between these results in service concrete and electric flux after 6 hours by ASTM C1202 in the laboratory are analyzed. The chloride diffusion coefficient of concrete, concrete surface resistivity and concrete 6 hours charge have good correlation relationship, which denote that the chloride diffusion coefficient and the surface resistivity of concrete are effective for evaluating the durability of concrete structures. The chloride diffusion coefficient of concrete is directly evaluated permeability of concrete box beam in service and may be used to predict the service life, which is fit to engineering applications and the concrete box beam is non-destructive. The concrete surface resistivity is easier available than the chloride diffusion coefficient, but it is directly not used to calculate the service life. Therefore the mathematical relation of the concrete surface resistivity and the concrete chloride diffusion coefficient need to be found, which the service life of reinforced concrete is obtained by the concrete surface resistivity.

Influence of Deposition Method on Refractive Index of SiO2 and TiO2 Thin Films for Anti-reflective Multilayers

  • Song, Myung-Keun;Yang, Woo-Seok;Kwon, Soon-Woo;Song, Yo-Seung;Cho, Nam-Ihn;Lee, Deuk-Yong
    • 한국세라믹학회지
    • /
    • 제45권9호
    • /
    • pp.524-530
    • /
    • 2008
  • Anti-Reflective (AR) thin film coatings of $SiO_2$ (n= 1.48) and $TiO_2$ (n=2.17) were deposited by ion-beam assisted deposition (IBAD) with End-Hall ion source and conventional electron beam (e-beam) evaporation to investigate the effect of deposition method on the refractive indicies (n) of the fIlms. Green-light generation using a GaAs laser diode was achieved via excitation of the second harmonic. The latter resulted from the transmission of the fundamental guided-mode wave of 1064 nm through periodically poled $LiNbO_3$. Large differences in the refractive indicies of each of the layers in the multilayer coating may improve AR performance. IBAD of $SiO_2$ reduced its refractive index from 1.45 to 1.34 at 1064 nm. Conversely, e-beam evaporation of $TiO_2$ increased its refractive index from 1.80 to 2.11. In addition, no fluctuations in absorption at the wavelength of 1064 nm were found. The results suggest that films prepared by different deposition methods can increase the effectiveness of multilayer AR coatings.

중성빔 입사장치에서 빔형성 구조의 입자모사 모형 (Particle Simulation Modelling of a Beam Forming Structure in Negative-Ion-Based Neutral Beam Injector)

  • Park, Byoung-Lyong;Hong, Sang-Hee
    • Nuclear Engineering and Technology
    • /
    • 제21권1호
    • /
    • pp.40-47
    • /
    • 1989
  • 중성입자입사 장치의 효율적인 빔형성 구조를 목적으로 정전기장 내에서 하전 입자의 움직임을 시간의 흐름에 따라 계산해 볼 수 있는 프로그램을 만들어 입자 모사 모형을 찾았다. 가속관 내의 입자의 움직임은 일정 시간 간격으로 계산하였고 전위는 유한차분법에 의해 Poisson 방정식에서 구하였다. 행렬식은 반복해법인 successive overrelaxation법을 사용하였고 전하밀도와 임자에 미치는 전기장의 힘을 구할 때는 cloud-in-cell모델을 사용하였다. 이 전자계산 코드를 사용하여 가속관 내 전극의 여러 조건들을 변화시켜가면서 빔형성 구조의 최적 설계를 수행하였다. 중성자 입사 장치의 가속관에서 가속 감속-전극간의 간격변화, 감속전극의 두께 변화, 가속 전극의 형태변화 등을 통하여 이들이 빔의 모양에 끼치는 영향을 조사하여 몇 가지 경우에 있어서 일정한 시간 간격으로 나타나는 입자들의 움직임을 예시하였다. 이 입자 모사모형을 통하여 가속전극의 형태가 빔 퍼짐에 가장 주요한 역할을 하는 것을 알았다.

  • PDF