• Title/Summary/Keyword: iodide

Search Result 756, Processing Time 0.04 seconds

A Study on the Removal Efficiency of a TEDA Impregnated Charcoal Bed for Methyl iodide under Humid Conditions (습윤 조건하에서 TEDA함침탄소층에 의한 Methyl Iodide 제거효율에 관한 연구)

  • Won Jin Cho;Soon Heung Chang
    • Nuclear Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.161-168
    • /
    • 1984
  • The adsorption model to predict the time dependent removal efficiency of methyl iodide by triethylenediamine (TEDA) impregnated charcoal bed under humid condition is proposed. Under humid conditions, the reduction of equilibrium adsorption capacity and effective pore diffusivity is considered. The predicted values are compared with the experimental results.

  • PDF

Iodine Intake and Excretion of the Patients with Thyroid Disease (갑상선질환 환자의 요오드섭취량과 배설량)

  • 장남수
    • Journal of Nutrition and Health
    • /
    • v.27 no.10
    • /
    • pp.1037-1047
    • /
    • 1994
  • Dietary iodine intake and urinary iodide excretion were meassured from 110 patients with various thyroid hormone diseses(hypothyroidism, hyperthyroidism, simple goiter and thyroid adenoma) and 67 normal control subjects. Iodine intake was assessed on the 24-hour recall dietary data using the compiled lists of food iodine values developed from various countries. Urinary iodide concentrations of drink water samples were measured with the iodide-selective electrode. The average iodine intake of the thyroid patients was 411$\mu\textrm{g}$, which was 87% higher(p<0.05) than that of the control subjects(220$\mu\textrm{g}$). Patients with hyperthyroidism and hypothyroidism or simple goiter excreted the most(0.6442ppm) amount of iodide respectively in the urine, with the control subject in the middle(0.5229ppm). Iodide concentrations of the drinking water samples were found to be in the range of 0.0015ppm to 0.0214ppm, which seemed to vary depending on the kind(underground water vs public water) and the location.

  • PDF

Effect of Temperature on the Adsorption and Desorption Characteristics of Methyl Iodide over TEDA-Impregnated Activated Carbon

  • Park, Geun-Il;Kim, In-Tae;Lee, Jae-Kwang;Ryu, Seung-Kon;Kim, Joo-Hyung
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.9-14
    • /
    • 2001
  • Adsorption and desorption characteristics of methyl iodide at high temperature conditions up to $250^{\circ}C$ by TEDA-impregnated activated carbon, which is used for radioiodine retention in nuclear facility, was experimentally evaluated. In the range of temperature from $30^{\circ}C$ to $250^{\circ}C$, the adsorption capacity of base activated carbon decreased sharply with increasing temperature but that of TEDA-impregnated activated carbon showed higher value even at high temperature ranges. Especially, the desorption amount of methyl iodide on TEDA-impregnated carbon represented lower value than that on unimpregnated carbon. The breakthrough curves of methyl iodide in the fixed bed packed with base carbon and TEDA-impregnated activated carbon at high temperature were compared. TEDA-impregnated activated carbon would be applicable to adsorption process up to $150^{\circ}C$ for the removal of radioiodine in a nuclear facility.

  • PDF

Polymeric Iodide-ion Selective Electrodes Based on Urea Derivative as an Ionophore

  • Jeong, Dae-Cheol;Lee, Hyo-Kyoung;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.1985-1988
    • /
    • 2006
  • The polymeric membrane electrodes based on urea derivative as an ionophore were prepared and studied for the iodide-ion selective electrode. This membrane exhibits a linear stable response over a wide concentration range ($1.0\;{\times}\;10^{-5}\sim1.0\;{\times}\;10^{-2}$) with a slope of -57.7 mV/decade, a detection limit of log[$I^-$] = -5.63, and a selectivity coefficient for iodide against perchlorate anion (log$K^{pot}_{I^-,j}$ = -1.42). The selectivity series of the membrane gives the follow as $I^-$ > $SCN^-$, $Sal^-$ > $ClO_4^-$ > $NO_3^-$ > $Br^-$ > $NO_2^-$ > $Cl^-$ > $F^-$. The proposed electrode showed good selectivity and response for iodide anion over a wide variety of other anions in pH 5.0 buffer solutions.

Syntheses of Amide Bonds and Activations of N-C(sp3) Bonds

  • Hong, Jang-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.10 no.4
    • /
    • pp.175-191
    • /
    • 2017
  • In organic chemistry amide synthesis is performed through condensation of a carboxylic acid and an amine with releasing one equivalent of water via the corresponding ammonium carboxylate salt. This method is suffering from tedious processes and poor atom-economy due to the adverse thermodynamics of the equilibrium and the high activation barrier for direct coupling of a carboxylic acid and an amine. Most of the chemical approaches to amides formations have been therefore being developed, they are mainly focused on secondary amides. Direct carbonylations of tertiary amines to amides have been an exotic field unresolved, in particular direct carbonylation of trimethylamine in lack of commercial need has been attracted much interests due to the versatile product of N,N-dimethylacetamide in chemical industries and the activation of robust N-C($sp^3$) bond in tertiary amine academically. This review is focused mainly on carbonylation of trimethylamine as one of the typical tertiary amines by transition metals of cobalt, rhodium, platinum, and palladium including the role of methyl iodide as a promoter, the intermediate formation of acyl iodide, the coordination ability of trimethylamine to transition metal catalysts, and any possibility of CO insertion into the bond of Me-N in trimethylamine. In addition reactions of acyl halides as an activated form of acetic acid with amines are reviewed in brief since acyl iodide is suggested as a critical intermediate in those carbonylations of trimethylamine.

Determination of total iodide in seawater by gas chromatography-mass spectrometry (Gas chromatography-mass spectrometry를 이용한 해수 중 총 요오드 정량분석)

  • Shin, Ueon-Sang
    • Analytical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.445-450
    • /
    • 2002
  • A sensitive gas chromatographic method has been established for the determination of total iodide in seawater as their volatile organic derivative. The method is based on the formation of 4-iodo-2,6-dimethylphenol with 2,6-dimethylphenol in matrix and a single-step extraction of the derivative with ethyl ether, which are then measured by gas chromatography-mass spectrometry (selected ion monitoring). Iodate in sea water was completely reduced to iodide with ascorbic acid and acetic acid. The detection limit was 0.1 ng/mL in seawater and the calibration curve showed good linearity with r=0.9997. The method was sensitive, reproducible and simple enough to permit the reliable routine analysis of total iodide in seawater. Total iodide in sea water was found about 30 ng/ml.

The Synergistic Effect of 2-Chloromethylbenzimidazole and Potassium Iodide on the Corrosion behavior of Mild Steel in Hydrochloric Acid Solution

  • Zhou, Liben;Cheng, Weizhong;Wang, Deng;Li, Zhaolei;Zhou, Haijun;Guo, Weijie
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.138-147
    • /
    • 2022
  • The synergistic effect of 2-chloromethylbenzimidazole (2-CBI) and potassium iodide (KI) for mild steel in 1 M hydrochloric acid solution was investigated by potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). The results showed that, with the addition of 100 ppm potassium iodide, the inhibition efficiecy (IE) of 100 ppm 2-CBI in 1 M hydrochloric acid had been improved from 91.14% to 96.15%. And synergistic parameter of 100 ppm 2-CBI with different amounts of potassium iodide is always greater than 1. The adsorption of potassium iodide combining with 100 ppm 2-CBI obeys to the Langmuir adsorption isotherm. Thermodynamic adsorption parameters, including ∆G0ads, ∆Ha and ∆Sa of the adsorption of the combinned inhibitor, as well as the Ea of the mild steel corrosion in 1 M HCl with the combinned inhibitor, were calculated.

Determination of Trace Iodide in Sodium Bisulfite Aqueous Solution by Ion Chromatography with UV Detection (이온크로마토그래피를 이용한 Sodium bisulfite 수용액 중의 미량 요오드 정량)

  • Park, Yang-Soon;Kim, Do-Yang;Choi, Kwang-Soon;Park, Soon-Dal;Han, Sun-Ho
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.304-308
    • /
    • 2000
  • The iodide was recovered from a simulated spent fuel to the sodium bisulfite aqueous solution. It was discussed that the trace iodide (below 1 ppm) was determined without the matrix effect of 0.1 M sodium bisulfite and 1 mM $HNO_3$ in aqueous solution by ion chromatography with UV detection. AS4A-SC (DIONEX) column and UV-absorption spectrophotometer were used. The UV-absorption spectra of sodium bisulfite, nitric acid and iodide were obtained, and then 230 nm was selected as an absorption wavelength for iodide determination. 0.1 M NaCl eluent was optimum condition. In this condition the calibration curve of iodide was obtained on the range of about 0-1,000 ppb. The linear coefficient was 0.99993 and the detection limit was 5 ppb. The relative standard deviation was 1.26%.

  • PDF

Synthesis of Water Soluble Chitosan Derivatives with Quaternary Ammonium Salt and Their Flocculating Behavior (4차 Ammonium 기를 가진 새로운 수용성 Chitosan 유도체의 제조 및 이들의 응집거동에 관한 연구)

  • Kim, Chun-Ho;Jung, Byung-Ok;Choi, Kyu-Suk;Kim, Jae-Jin
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.118-128
    • /
    • 1996
  • N-methyl, N-butyl and N,N-dibutyl chitosan derivatives were prepared by Schiff's base formation and hydrogenation in aqueous media. Furthermore quaternization of the chitosan derivatives was performed in N-methyl-2-pyrrolidone using methyl iodide to obtain water soluble cationic polyelectrolytes. It was confirmed that O-alkylation was occured as well as selective N-alkylation in these reactions. Chitosan and chitosan derivatives with quaternary ammonium iodide showed high flocculation power as the cationic flocculant. When tested on paper mill waste water, they showed high flocculation power, independing of pH range. The flocculation power was increased as the N-alkyl chain length was increased. Among them, N-butyl dimethyl chitosan ammonium iodide showed better flocculation power than chitosan. But, N,N-dibutyl-N-methyl chitosan ammonium iodide showed less flocculation powre than chitosan itself.

  • PDF

The influence of marine algae on iodine speciation in the coastal ocean

  • Carrano, Mary W.;Yarimizu, Kyoko;Gonzales, Jennifer L.;Cruz-Lopez, Ricardo;Edwards, Matthew S.;Tymon, Teresa M.;Kupper, Frithjof C.;Carrano, Carl J.
    • ALGAE
    • /
    • v.35 no.2
    • /
    • pp.167-176
    • /
    • 2020
  • Iodine exists as a trace element in seawater, with total iodine being generally constant at about 0.45-0.55 μM. Almost all of this iodine occurs in two main forms: iodate and iodide. Iodate is the thermodynamically stable form under normal seawater conditions, and thus should be the only iodine-containing species in the water column. However, iodate concentrations are found to vary considerably, being generally greater at depth and lower at the surface, while iodide concentrations follow the reverse pattern, being anomalously accumulated in the euphotic zone and decreasing with depth. The fact that iodide concentrations follow a depth dependence corresponding to the euphotic zone suggests that biological activity is the source of the reduced iodine. Nonetheless, the nature and source of iodate reduction activity remains controversial. Here, using a combination of field and laboratory studies, we examine some of the questions raised in our and other previous studies, and seek further correlations between changes in iodine speciation and the presence of marine macro- and microalgae. The present results indicate that microalgal growth per se does not seem to be responsible for the reduction of iodate to iodide. However, there is some support for the hypothesis that iodate reduction can occur due to release of cellular reducing agents that accompany cell senescence during phytoplankton bloom declines. In addition, support is given to the concept that macroalgal species such as giant kelp (Macrocystis pyrifera) can take up both iodide and iodate from seawater (albeit on a slower time scale). We propose a mechanism whereby iodate is reduced to iodide at the cell surface by cell surface reductases and is taken up directly as such without reentering the bulk solution.