• Title/Summary/Keyword: investment securities

Search Result 96, Processing Time 0.019 seconds

Discovering Essential AI-based Manufacturing Policy Issues for Competitive Reinforcement of Small and Medium Manufacturing Enterprises (중소 제조기업의 경쟁력 강화를 위한 제조AI 핵심 정책과제 도출에 관한 연구)

  • Kim, Il Jung;Kim, Woo Soon;Kim, Joon Young;Chae, Hee Su;Woo, Ji Yeong;Do, Kyung Min;Lim, Sung Hoon;Shin, Min Soo;Lee, Ji Eun;Kim, Heung Nam
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.4
    • /
    • pp.647-664
    • /
    • 2022
  • Purpose: The purpose of this study is to derive major policies that domestic small and medium-sized manufacturing companies should consider to maximize productivity and quality improvement by utilizing manufacturing data and AI, and to find priorities and implications. Methods: In this study, domestic and international issues and literature review by country were conducted to derive major considerations such as manufacturing AI technology, manufacturing AI talent, manufacturing AI data and manufacturing AI ecosystem. Additionally, the questionnaire survey targeting 46 experts of manufacturing data and AI industry were conducted. Finally, the major considerations and detailed factors importance were derived by applying the Analytic Hierarchy Process (AHP). Results: As a result of the study, it was found that 'manufacturing AI technology', 'manufacturing AI talent', 'manufacturing AI data', and 'manufacturing AI ecosystem' exist as key considerations for domestic manufacturing AI. After empirical analysis, the importance of the four key considerations was found to be 'manufacturing AI ecosystem (0.272)', 'manufacturing AI data (0.265)', 'manufacturing AI technology (0.233)', and 'manufacturing AI talent (0.230)'. The importance of the derived four viewpoints is maintained at a similar level. In addition, looking at the detailed variables with the highest importance for each of the four perspectives, 'Best Practice', 'manufacturing data quality management regime, 'manufacturing data collection infrastructure', and 'manufacturing AI manpower level of solution providers' were found. Conclusion: For the sustainable growth of the domestic manufacturing AI ecosystem, it should be possible to develop and promote manufacturing AI policies in a balanced way by considering all four derived viewpoints. This paper is expected to be used as an effective guideline when developing policies for upgrading manufacturing through domestic manufacturing data and AI in the future.

The Information Effect of FDA Approval Announcements on Pharmaceutical and Bio-Health Companies' Stock Prices (FDA 승인 공시가 제약 및 바이오·헬스케어 기업의 주가에 미치는 정보효과)

  • Yu Jeong Song;Sang-Gun Lee;So Ra Park
    • Information Systems Review
    • /
    • v.26 no.1
    • /
    • pp.289-313
    • /
    • 2024
  • Korean pharmaceutical and bio-health companies began applying for FDA approval in 2000. However, drug companies in South Korea are not required to obtain FDA approval to market their products on the South Korean market, and the approval process is highly resource-intensive. This study utilizes event study methodology to examine the information effect of US FDA approval announcements on the stock prices of pharmaceutical and bio-health companies listed on South Korean stock markets. The study's results show that FDA approval announcements caused abnormal increases in corporate stock prices, indicating that these announcements have a transnational information effect on South Korean companies' value. Furthermore, the results show that the impact of FDA approval announcements on stock prices is greater for small companies than mid-sized and large companies and in bio and healthcare industries than in the traditional pharmaceutical industry. This impact is also more significant on the KOSDAQ (Korea Securities Dealers Automated Quotation) companies than the KOSPI (Korean Composite Stock Price Index) companies and after the expansion of stock price limits. These findings signal that the information effect is more significant when regulatory controls are weaker. The results also indicate that obtaining FDA approval brings above-normal returns for companies and that FDA application is a high-risk, high-return investment.

International Monetary System Reform and the G20 (국제통화제도의 개혁과 G20)

  • Cho, Yoon Je
    • KDI Journal of Economic Policy
    • /
    • v.32 no.4
    • /
    • pp.153-195
    • /
    • 2010
  • The recent global financial crisis has been the outcome of, among other things, the mismatch between institutions and the reality of the market in the current global financial system. The International financial institutions (IFIs) that were designed more than 60 years ago can no longer effectively meet the challenges posed by the current global economy. While the global financial market has become integrated like a single market, there is no international lender of last resort or global regulatory body. There also has been a rapid shift in the weight of economic power. The share of the Group of 7 (G7) countries in global gross domestic product (GDP) fell and the share of emerging market economies increased rapidly. Therefore, the tasks facing us today are: (i) to reform the IFIs -mandate, resources, management, and governance structure; (ii) to reform the system such as the international monetary system (IMS), and regulatory framework of the global financial system; and (iii) to reform global economic governance. The main focus of this paper will be the IMS reform and the role of the Group of Twenty (G20) summit meetings. The current IMS problems can be summarized as follows. First, the demand for foreign reserve accumulation has been increasing despite the movement from fixed exchange rate regimes to floating rate regimes some 40 years ago. Second, this increasing demand for foreign reserves has been concentrated in US dollar assets, especially public securities. Third, as the IMS relies too heavily on the supply of currency issued by a center country (the US), it gives an exorbitant privilege to this country, which can issue Treasury bills at the lowest possible interest rate in the international capital market. Fourth, as a related problem, the global financial system depends too heavily on the center country's ability to maintain the stability of the value of its currency and strength of its own financial system. Fifth, international capital flows have been distorted in the current IMS, from EMEs and developing countries where the productivity of capital investment is higher, to advanced economies, especially the US, where the return to capital investment is lower. Given these problems, there have been various proposals to reform the current IMS. They can be grouped into two: demand-side and supply-side reform. The key in the former is how to reduce the widespread strong demand for foreign reserve holdings among EMEs. There have been several proposals to reduce the self-insurance motivation. They include third-party insurance and the expansion of the opportunity to borrow from a global and regional reserve pool, or access to global lender of last resort (or something similar). However, the first option would be too costly. That leads us to the second option - building a stronger globalfinancial safety net. Discussions on supply-side reform of the IMS focus on how to diversify the supply of international reserve currency. The proposals include moving to a multiple currency system; increased allocation and wider use of special drawing rights (SDR); and creating a new global reserve currency. A key question is whether diversification should be encouraged among suitable existing currencies, or if it should be sought more with global reserve assets, acting as a complement or even substitute to existing ones. Each proposal has its pros and cons; they also face trade-offs between desirability and political feasibility. The transition would require close collaboration among the major players. This should include efforts at the least to strengthen policy coordination and collaboration among the major economies, and to reform the IMF to make it a more effective institution for bilateral and multilateral surveillance and as an international lender of last resort. The success on both fronts depends heavily on global economic governance reform and the role of the G20. The challenge is how to make the G20 effective. Without institutional innovations within the G20, there is a high risk that its summits will follow the path of previous summit meetings, such as G7/G8.

  • PDF

Empirical Analysis on Bitcoin Price Change by Consumer, Industry and Macro-Economy Variables (비트코인 가격 변화에 관한 실증분석: 소비자, 산업, 그리고 거시변수를 중심으로)

  • Lee, Junsik;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.195-220
    • /
    • 2018
  • In this study, we conducted an empirical analysis of the factors that affect the change of Bitcoin Closing Price. Previous studies have focused on the security of the block chain system, the economic ripple effects caused by the cryptocurrency, legal implications and the acceptance to consumer about cryptocurrency. In various area, cryptocurrency was studied and many researcher and people including government, regardless of country, try to utilize cryptocurrency and applicate to its technology. Despite of rapid and dramatic change of cryptocurrencies' price and growth of its effects, empirical study of the factors affecting the price change of cryptocurrency was lack. There were only a few limited studies, business reports and short working paper. Therefore, it is necessary to determine what factors effect on the change of closing Bitcoin price. For analysis, hypotheses were constructed from three dimensions of consumer, industry, and macroeconomics for analysis, and time series data were collected for variables of each dimension. Consumer variables consist of search traffic of Bitcoin, search traffic of bitcoin ban, search traffic of ransomware and search traffic of war. Industry variables were composed GPU vendors' stock price and memory vendors' stock price. Macro-economy variables were contemplated such as U.S. dollar index futures, FOMC policy interest rates, WTI crude oil price. Using above variables, we did times series regression analysis to find relationship between those variables and change of Bitcoin Closing Price. Before the regression analysis to confirm the relationship between change of Bitcoin Closing Price and the other variables, we performed the Unit-root test to verifying the stationary of time series data to avoid spurious regression. Then, using a stationary data, we did the regression analysis. As a result of the analysis, we found that the change of Bitcoin Closing Price has negative effects with search traffic of 'Bitcoin Ban' and US dollar index futures, while change of GPU vendors' stock price and change of WTI crude oil price showed positive effects. In case of 'Bitcoin Ban', it is directly determining the maintenance or abolition of Bitcoin trade, that's why consumer reacted sensitively and effected on change of Bitcoin Closing Price. GPU is raw material of Bitcoin mining. Generally, increasing of companies' stock price means the growth of the sales of those companies' products and services. GPU's demands increases are indirectly reflected to the GPU vendors' stock price. Making an interpretation, a rise in prices of GPU has put a crimp on the mining of Bitcoin. Consequently, GPU vendors' stock price effects on change of Bitcoin Closing Price. And we confirmed U.S. dollar index futures moved in the opposite direction with change of Bitcoin Closing Price. It moved like Gold. Gold was considered as a safe asset to consumers and it means consumer think that Bitcoin is a safe asset. On the other hand, WTI oil price went Bitcoin Closing Price's way. It implies that Bitcoin are regarded to investment asset like raw materials market's product. The variables that were not significant in the analysis were search traffic of bitcoin, search traffic of ransomware, search traffic of war, memory vendor's stock price, FOMC policy interest rates. In search traffic of bitcoin, we judged that interest in Bitcoin did not lead to purchase of Bitcoin. It means search traffic of Bitcoin didn't reflect all of Bitcoin's demand. So, it implies there are some factors that regulate and mediate the Bitcoin purchase. In search traffic of ransomware, it is hard to say concern of ransomware determined the whole Bitcoin demand. Because only a few people damaged by ransomware and the percentage of hackers requiring Bitcoins was low. Also, its information security problem is events not continuous issues. Search traffic of war was not significant. Like stock market, generally it has negative in relation to war, but exceptional case like Gulf war, it moves stakeholders' profits and environment. We think that this is the same case. In memory vendor stock price, this is because memory vendors' flagship products were not VRAM which is essential for Bitcoin supply. In FOMC policy interest rates, when the interest rate is low, the surplus capital is invested in securities such as stocks. But Bitcoin' price fluctuation was large so it is not recognized as an attractive commodity to the consumers. In addition, unlike the stock market, Bitcoin doesn't have any safety policy such as Circuit breakers and Sidecar. Through this study, we verified what factors effect on change of Bitcoin Closing Price, and interpreted why such change happened. In addition, establishing the characteristics of Bitcoin as a safe asset and investment asset, we provide a guide how consumer, financial institution and government organization approach to the cryptocurrency. Moreover, corroborating the factors affecting change of Bitcoin Closing Price, researcher will get some clue and qualification which factors have to be considered in hereafter cryptocurrency study.

WHICH INFORMATION MOVES PRICES: EVIDENCE FROM DAYS WITH DIVIDEND AND EARNINGS ANNOUNCEMENTS AND INSIDER TRADING

  • Kim, Chan-Wung;Lee, Jae-Ha
    • The Korean Journal of Financial Studies
    • /
    • v.3 no.1
    • /
    • pp.233-265
    • /
    • 1996
  • We examine the impact of public and private information on price movements using the thirty DJIA stocks and twenty-one NASDAQ stocks. We find that the standard deviation of daily returns on information days (dividend announcement, earnings announcement, insider purchase, or insider sale) is much higher than on no-information days. Both public information matters at the NYSE, probably due to masked identification of insiders. Earnings announcement has the greatest impact for both DJIA and NASDAQ stocks, and there is some evidence of positive impact of insider asle on return volatility of NASDAQ stocks. There has been considerable debate, e.g., French and Roll (1986), over whether market volatility is due to public information or private information-the latter gathered through costly search and only revealed through trading. Public information is composed of (1) marketwide public information such as regularly scheduled federal economic announcements (e.g., employment, GNP, leading indicators) and (2) company-specific public information such as dividend and earnings announcements. Policy makers and corporate insiders have a better access to marketwide private information (e.g., a new monetary policy decision made in the Federal Reserve Board meeting) and company-specific private information, respectively, compated to the general public. Ederington and Lee (1993) show that marketwide public information accounts for most of the observed volatility patterns in interest rate and foreign exchange futures markets. Company-specific public information is explored by Patell and Wolfson (1984) and Jennings and Starks (1985). They show that dividend and earnings announcements induce higher than normal volatility in equity prices. Kyle (1985), Admati and Pfleiderer (1988), Barclay, Litzenberger and Warner (1990), Foster and Viswanathan (1990), Back (1992), and Barclay and Warner (1993) show that the private information help by informed traders and revealed through trading influences market volatility. Cornell and Sirri (1992)' and Meulbroek (1992) investigate the actual insider trading activities in a tender offer case and the prosecuted illegal trading cased, respectively. This paper examines the aggregate and individual impact of marketwide information, company-specific public information, and company-specific private information on equity prices. Specifically, we use the thirty common stocks in the Dow Jones Industrial Average (DJIA) and twenty one National Association of Securities Dealers Automated Quotations (NASDAQ) common stocks to examine how their prices react to information. Marketwide information (public and private) is estimated by the movement in the Standard and Poors (S & P) 500 Index price for the DJIA stocks and the movement in the NASDAQ Composite Index price for the NASDAQ stocks. Divedend and earnings announcements are used as a subset of company-specific public information. The trading activity of corporate insiders (major corporate officers, members of the board of directors, and owners of at least 10 percent of any equity class) with an access to private information can be cannot legally trade on private information. Therefore, most insider transactions are not necessarily based on private information. Nevertheless, we hypothesize that market participants observe how insiders trade in order to infer any information that they cannot possess because insiders tend to buy (sell) when they have good (bad) information about their company. For example, Damodaran and Liu (1993) show that insiders of real estate investment trusts buy (sell) after they receive favorable (unfavorable) appraisal news before the information in these appraisals is released to the public. Price discovery in a competitive multiple-dealership market (NASDAQ) would be different from that in a monopolistic specialist system (NYSE). Consequently, we hypothesize that NASDAQ stocks are affected more by private information (or more precisely, insider trading) than the DJIA stocks. In the next section, we describe our choices of the fifty-one stocks and the public and private information set. We also discuss institutional differences between the NYSE and the NASDAQ market. In Section II, we examine the implications of public and private information for the volatility of daily returns of each stock. In Section III, we turn to the question of the relative importance of individual elements of our information set. Further analysis of the five DJIA stocks and the four NASDAQ stocks that are most sensitive to earnings announcements is given in Section IV, and our results are summarized in Section V.

  • PDF

Classification Algorithm-based Prediction Performance of Order Imbalance Information on Short-Term Stock Price (분류 알고리즘 기반 주문 불균형 정보의 단기 주가 예측 성과)

  • Kim, S.W.
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.157-177
    • /
    • 2022
  • Investors are trading stocks by keeping a close watch on the order information submitted by domestic and foreign investors in real time through Limit Order Book information, so-called price current provided by securities firms. Will order information released in the Limit Order Book be useful in stock price prediction? This study analyzes whether it is significant as a predictor of future stock price up or down when order imbalances appear as investors' buying and selling orders are concentrated to one side during intra-day trading time. Using classification algorithms, this study improved the prediction accuracy of the order imbalance information on the short-term price up and down trend, that is the closing price up and down of the day. Day trading strategies are proposed using the predicted price trends of the classification algorithms and the trading performances are analyzed through empirical analysis. The 5-minute KOSPI200 Index Futures data were analyzed for 4,564 days from January 19, 2004 to June 30, 2022. The results of the empirical analysis are as follows. First, order imbalance information has a significant impact on the current stock prices. Second, the order imbalance information observed in the early morning has a significant forecasting power on the price trends from the early morning to the market closing time. Third, the Support Vector Machines algorithm showed the highest prediction accuracy on the day's closing price trends using the order imbalance information at 54.1%. Fourth, the order imbalance information measured at an early time of day had higher prediction accuracy than the order imbalance information measured at a later time of day. Fifth, the trading performances of the day trading strategies using the prediction results of the classification algorithms on the price up and down trends were higher than that of the benchmark trading strategy. Sixth, except for the K-Nearest Neighbor algorithm, all investment performances using the classification algorithms showed average higher total profits than that of the benchmark strategy. Seventh, the trading performances using the predictive results of the Logical Regression, Random Forest, Support Vector Machines, and XGBoost algorithms showed higher results than the benchmark strategy in the Sharpe Ratio, which evaluates both profitability and risk. This study has an academic difference from existing studies in that it documented the economic value of the total buy & sell order volume information among the Limit Order Book information. The empirical results of this study are also valuable to the market participants from a trading perspective. In future studies, it is necessary to improve the performance of the trading strategy using more accurate price prediction results by expanding to deep learning models which are actively being studied for predicting stock prices recently.