• Title/Summary/Keyword: inverter-based

Search Result 1,290, Processing Time 0.032 seconds

Torque Ripple Minimization for Induction Motor Driven by a Photovoltaic Inverter

  • Atia, Yousry
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.679-690
    • /
    • 2009
  • The paper presents a new photovoltaic inverter for stand-alone induction motor application. The proposed system is composed of two stages. First stage is for the photovoltaic dc power feeding and second stage is dedicated to the motor-inverter subsystem and control technique. A direct torque control (DTC) with a novel switching strategy for motor torque ripple minimization is introduced. The novel DTC strategy is based on selecting a suitable voltage vector group for motor torque ripple minimization. A three-level voltage source inverter (VSI) is used instead of a two level inverter because the first has more available vectors and lower ripples in the output current and flux than the second, thus it has lower torque ripples. The photovoltaic array and battery bank are sized and the configuration is indicated based on sun-hour methodology. Simulation results show a comparison between three systems; two level VSI with conventional DTC strategy, three level VSI with conventional DTC, and the proposed system that has a novel DTC switching strategy applied to three level VSI. The results show that the proposed system has lower ripples in the current, flux and torque of the motor.

Analysis of Cascaded H-Bridge Multilevel Inverter in DTC-SVM Induction Motor Drive for FCEV

  • Gholinezhad, Javad;Noroozian, Reza
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.304-315
    • /
    • 2013
  • In this paper, analysis of cascaded H-bridge multilevel inverter in DTC-SVM (Direct Torque Control-Space Vector Modulation) based induction motor drive for FCEV (Fuel Cell Electric Vehicle) is presented. Cascaded H-bridge multilevel inverter uses multiple series units of H-bridge power cells to achieve medium-voltage operation and low harmonic distortion. In FCEV, a fuel cell stack is used as the major source of electric power moreover the battery and/or ultra-capacitor is used to assist the fuel cell. These sources are suitable for utilizing in cascaded H-bridge multilevel inverter. The drive control strategy is based on DTC-SVM technique. In this scheme, first, stator voltage vector is calculated and then realized by SVM method. Contribution of multilevel inverter to the DTC-SVM scheme is led to achieve high performance motor drive. Simulations are carried out in Matlab-Simulink. Five-level and nine-level inverters are applied in 3hp FCEV induction motor drive for analysis the multilevel inverter. Each H-bridge is implemented using one fuel cell and battery. Good dynamic control and low ripple in the torque and the flux as well as distortion decrease in voltage and current profiles, demonstrate the great performance of multilevel inverter in DTC-SVM induction motor drive for vehicle application.

The Comparative Analysis of 2-Phase Inverter Topologies for 2-Phase Induction Motor (2상 유도전동기 구동을 위한 2상 인버터 토폴로지의 비교 분석)

  • Kim, Dong-Ki;Yoon, Duck-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1013-1018
    • /
    • 2016
  • In this paper, three kinds of the inverter topologies for the variable speed drive of 2-phase induction motor are compared and analyzed. The 2-phase inverters are classified into 2-leg, 3-leg, and 4-leg types depending on the number of power switching devices. And they use the output voltage vectors of the different forms according to the inverter topologies. Based on the comparative analyzed results, the effective values of output voltage have been defined by the linear modulation range. Therefore, the motor design guideline is proposed in order to decide a rated voltage of 2-phase induction motor according to the inverter topologies. Also, the computer simulations are carried out to verify the output voltage and current characteristics of each inverter topology.

A New Single Phase Multilevel Inverter Topology with Two-step Voltage Boosting Capability

  • Roy, Tapas;Sadhu, Pradip Kumar;Dasgupta, Abhijit
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1173-1185
    • /
    • 2017
  • In this paper, a new single phase multilevel inverter topology with a single DC source is presented. The proposed topology is developed based on the concepts of the L-Z source inverter and the switched capacitor multilevel inverter. The input voltage to the proposed inverter is boosted by two steps: the first step by an impedance network and the second step by switched capacitor units. Compared to other existing topologies, the presented topology can produce a higher boosted multilevel output voltage while using a smaller number of components. In addition, it provides more flexibility to control boosting factor, size, cost and complexity of the inverter. The proposed inverter possesses all the advantages of the L-Z source inverter and the switched capacitor multilevel inverter like controlling the start-up inrush current and capacitor voltage balancing using a simple switching strategy. The operating principle and general expression for the different parameters of the proposed topology are presented in detail. A phase disposition pulse width modulation strategy has been developed to switch the inverter. The effectiveness of the topology is verified by extensive simulation and experimental studies on a 7-level inverter structure.

Stability Enhancement of Four-in-Wheel Motor-Driven Electric Vehicles Using an Electric Differential System

  • Hartani, Kada;Merah, Abdelkader;Draou, Azeddine
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1244-1255
    • /
    • 2015
  • This paper presents a new multi-machine robust control based on an electric differential system for electric vehicle (EV) applications which is composed of four in-wheel permanent magnet synchronous motors. It is based on a new master-slave direct torque control (DTC) algorithm, which is used for the control of bi-machine traction systems based on a speed model reference adaptive system observer. The use of an electric differential in the design of a new EV constitutes a technological breakthrough. A classical system with a multi-inverter and a multi-machine comprises a three-phase inverter for each machine to be controlled. Another approach consists of only one three-phase inverter for several permanent magnet synchronous machines. The control of multi-machine single-inverter systems is the subject of this study. Several methods have been proposed for the control of multi-machine single-inverter systems. In this study, a new master-slave based DTC strategy is developed to generate an electric differential system. The entire system is simulated by Matlab/Simulink. The simulation results show the effectiveness of the new multi-machine robust control based on an electric differential system for use in EV applications.

The Control Technique of 3 Phase NPC PWM Inverter to control fixed Total Harmonic Distortion (종합 고조파 왜율 일정 제어를 위한 삼상 NPC PWM 인버어터의 제어 기법)

  • Song, Eon-Bin
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.565-567
    • /
    • 1994
  • This paper presents a software based NPC PWM inverter control technique to eliminate the harmonics in the output waveforms of inverter. The proposed control technique is able to keep down total harmonic distortion and significantly improve the performance of the inverter. In the control node where the frequency ratio is 36 and the modulation index is $1.2\sim2.0$, the proposed inverter has been operated wi thin 5% Total Harmonic Distortion.

  • PDF

The control method of 3-level PWM inverter in special application using neural networks (신경회로망을 사용한 특정용도의 3-level PWM 인버터 제어방법)

  • 이현원;김남해;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1261-1264
    • /
    • 1996
  • This paper presents the design of a neural network based PWM technique for a three level inverter of electric trains. A three-level inverter has several advantages compared with a two-level inverter in this application. In viewpoint of correcting unbalance of DC-link voltage, a novel method is developed and verified in computer simulation.

  • PDF

Analysis of Multi Level Current Source GTO Inverter for Induction Motor Drives

  • Arase, Takayuki;Matususe, Kouki
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.535-540
    • /
    • 1998
  • This paper discusses a triple stage current source GTO inverter system for high power motor drives. The energy rebound circuit of the triple stage inverter not only controls the spike voltage of the GTO inverter but also facilitates PWM control of the thyristor rectifier operated at unity fundamental input power factor. Based on Pspice simulation and experiments, the principles and PWM pulse pattern for removing specific lower harmonics in the inverter's output current are discussed in detail.

  • PDF

Performance Evaluations of Digitally-Controlled Auxiliary Resonant Commutation Snubber-Assisted Three Phase Voltage Source Soft Switching Inverter

  • Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • This paper presents a performance analysis of typical Auxiliary Resonant Commutation Snubber-assisted three phase voltage source soft switching inverter which can operate under a condition of Zero Voltage Switching (ZVS) using a digital control scheme which is suitable for high power applications compared with resonant DC link snubber assisted soft switching inverter. The system performances of this inverter are illustrated and evaluated on the basis of experimental results.

Static Equivalent Model of Inverter-based Distributed Energy Resource for Fault Analysis of Power Distribution Grid

  • Kim, Dong-Eok;Cho, Namhun;Yang, Seung-Kwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.569-575
    • /
    • 2016
  • In this paper, we propose a method to develop a static equivalent model of an inverter-based distributed energy resource (DER), where the model is used for a steady-state fault analysis of a power grid. First, we introduce the characteristics of an inverter-based DER as well as its general configuration. Then, we derive the equivalent model of the DER on the basis of the characteristics. Last, the performance of the proposed method is proven by the results of computer simulations.