• Title/Summary/Keyword: inverter topology

Search Result 376, Processing Time 0.026 seconds

Analysis and Design of a Three-port Flyback Inverter using an Active Power Decoupling Method to Minimize Input Capacitance

  • Kim, Jun-Gu;Kim, Kyu-Dong;Noh, Yong-Su;Jung, Yong-Chae;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.558-568
    • /
    • 2013
  • In this paper, a new decoupling technique for a flyback inverter using an active power decoupling circuit with auxiliary winding and a novel switching pattern is proposed. The conventional passive power decoupling method is applied to control Maximum Power Point Tracking (MPPT) efficiently by attenuating double frequency power pulsation on the photovoltaic (PV) side. In this case, decoupling capacitor for a flyback inverter is essentially required large electrolytic capacitor of milli-farads. However using the electrolytic capacitor have problems of bulky size and short life-span. Because this electrolytic capacitor is strongly concerned with the life-span of an AC module system, an active power decoupling circuit to minimize input capacitance is needed. In the proposed topology, auxiliary winding defined as a Ripple port will partially cover difference between a PV power and an AC Power. Since input capacitor and auxiliary capacitor is reduced by Ripple port, it can be replaced by a film capacitor. To perform the operation of charging/discharging decoupling capacitor $C_x$, a novel switching sequence is also proposed. The proposed topology is verified by design analysis, simulation and experimental results.

Suppression of Common-Mode Voltage in a Multi-Central Large-Scale PV Generation Systems for Medium-Voltage Grid Connection (중전압 계통 연계를 위한 멀티 센트럴 대용량 태양광 발전 시스템의 공통 모드 전압 억제)

  • Bae, Young-Sang;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.31-40
    • /
    • 2014
  • This paper describes an optimal configuration for multi-central inverters in a medium-voltage (MV) grid, which is suitable for large-scale photovoltaic (PV) power plants. We theoretically analyze a proposed common-mode equivalent model for problems associated with multi-central transformerless-type three-phase full bridge(3-FB) PV inverters employing two-winding MV transformers. We propose a synchronized PWM control strategy to effectively reduce the common-mode voltages that may simultaneously occur. In addition, we propose that the existing 3-FB topology may also have the configuration of a multi-central inverter with a two-winding MV transformer by making a simple circuit modification. Simulation and experimental results of three 350kW PV inverters in a multi-central configuration verify the effectiveness of the proposed synchronization control strategy. The modified transformerless-type 3-FB topology for a multi-central PV inverter configuration is verified using an experimental prototype of a 100kW PV inverter.

A High-efficiency Buck-boost Half-bridge Inverter for Single-phase Photovoltaic Generation (단상 태양광 발전용 고효율 벅부스트 하프브리지 인버터)

  • Hyung-Min Ryu
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.450-455
    • /
    • 2023
  • Among single-phase photovoltaic inverters that can avoid excessive leakage current caused by the large parasitic capacitance of photovoltaic panels, a boost converter followed by a half-bridge inverter is the simplest and has the smallest leakage current. However, due to the high DC-link voltage, the rated voltage of the switching devices is high and the switching loss is large. This paper proposes a new circuit topology which can operate as a buck-boost inverter by adding two bidirectional switches to the output side of the half-bridge inverter instead of removing the boost converter. By reducing two stages of power conversion through the high-voltage DC-link to one stage, power loss can be reduced without increasing costs and leakage current. The feasibility of the proposed circuit topology is verified by computer simulation and power loss calculation.

A Control Strategy of the ZVT Inverter for Induction Motor Drives (3상 유도전동기 구동용 새로운 ZVT 인버터의 제어기법)

  • 송인석;이성룡
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.10-13
    • /
    • 1998
  • In this paper, a control strategy of the three phase ZVT inverter for ac motor drives is proposed. The topology of ZVT inverter analyzed with a description of the control conditions dependent on the load current and MSVM(Modified Space Vector Modulation). The detailed simulation results indicate that zero-voltage operation during transition of the MSVM algorithm can be achieved.

  • PDF

Field Oriented Control for Induction Motor Using Four Switch Three Phases Inverter

  • Tuyen, Nguyen D.;Hoang, Nguyen M.;Lee, Hong-Hee;Chun, Tae-Won
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.216-218
    • /
    • 2008
  • This paper presents a space vector pulse width modulation (SVPWM) technique for four-switch three-phase (4S3P) inverter topology. The method aims to apply Field Oriented Control (FOC) of Induction motor using 4S3P. The simulations are carried out and the experimental results are given to verify the feasibility of this method.

  • PDF

Analysis of voltage controller of Dual-Buck Inverter using Redox Flow Battery (RFB 용 Dual-Buck Inverter 전압제어 품질 향상에 관한 연구)

  • Choe, Jung-Muk;Cho, Younghoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.393-394
    • /
    • 2014
  • This paper proposes advanced RFB PCS for islanded environment. To accommodate islanded system, power conditioning needs voltage control authority changing. Dualbuck inverter topology is designed for the high efficiency. In order to reduce voltage error the repetitive controller is used in this paper. The control performance has been verified with computer simulation.

  • PDF

A New Topology of Four-Level Hybrid Half-Bridge Flying-Capacitor Inverter (4-레벨 하이브리드 하프 브리지 플라잉 캐패시터 인버터의 새로운 토폴로지)

  • Pribadi, Jonathan;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.315-316
    • /
    • 2019
  • This paper proposes the operation scheme and control method for a four-level hybrid half-bridge flying-capacitor inverter (4L-HHBFCI). With in-phase disposition level-shifted modulation (IPD), the flying capacitor voltage ripple is less than 1% of the reference value, while the line-to-line voltage total harmonic distortion is 23.27% at unity modulation index. The performance and effectiveness of the proposed inverter operation have been verified by simulation results.

  • PDF

Analysis and Design of a Bidirectional Cycloconverter-Type High Frequency Link Inverter with Natural Commutated Phase Angle Control

  • Salam, Zainal;Lim, Nge Chee;Ayo, Shahrin Md.
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.677-687
    • /
    • 2011
  • In this paper a cycloconverter-type high frequency transformer link inverter with a reduced switch count is analyzed and designed. The proposed topology consists of an H-bridge inverter at the transformer's primary side and a cycloconverter with three bidirectional switches at the secondary. All of the switches of the cycloconverter operate in non-resonant zero voltage and zero current switching modes. To overcome a high voltage surge problem resulting from the transformer leakage inductance, phase angle control based on natural commutation is employed. The effectiveness of the proposed inverter is verified by constructing s 750W prototype. Experimentally, the inverter is able to supply a near sinusoidal output voltage with a total harmonic distortion of less than 1%. For comparison, a PSpice simulation of the inverter is also carried out. It was found that the experimental results are in very close agreement with the simulation.

A New Half-bridge Resonant Inverter with Load-Freewheeling Modes

  • Yeon, Jae-Eul;Cho, Kyu-Min;Kim, Hee-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.249-256
    • /
    • 2007
  • This paper presents a new circuit topology and its digital control scheme for a half-bridge resonant inverter. As the proposed half-bridge inverter can be operated in load-freewheeling modes, the pulse-width modulation (PWM) method can be used for the output power control. The proposed half-bridge inverter is based on the resonant frequency-tracking algorithm with the goal of maintaining the unity of the output displacement factor of the load impedance even in varying conditions. In this paper, the operation principle, electrical characteristics, and detailed digital control scheme of the proposed half-bridge resonant inverter are described. The experimental results of the prototype experimental setup to verify the validity of the proposed half-bridge inverter are presented and discussed.