• Title/Summary/Keyword: invertase synthesis

Search Result 5, Processing Time 0.02 seconds

Microenvironmental Optimizaton of Immobilized Invertase for Methyl- $\beta$ -D-Fructofuranoside Synthesis (Methyl- $\beta$ -D-Fructofuranoside 합성을 위한 고정화 전화당 효소의 미소환경 최적화)

  • 허주형;안형환
    • Journal of the Korea Safety Management & Science
    • /
    • v.1 no.1
    • /
    • pp.259-272
    • /
    • 1999
  • In order to enhance the selectivity, productivity and yield of methyl fructoside, which was synthesized by enzymatic glycosylation of sucrose and methanol solution, controlling of surface property of solid support using different immobilization procedures optimized microenvironment of immobilized invertase. Silanization and polyethylene imine coating methods were adopted to give a hydrophobic and hydrophilic environment of immobilized invertase. As a result, polyethyleneimine coating method gave higher loading of enzyme, effective activity, and relative activity than silanization method, because it brought on increasing the functional density of amino group and enhancing the conservation of activity by regulating of hydrophilicity. And then, hydrophilic environment was possible to restraint the assessing of methyl fructoside molecule, which was more hydrophobic than sucrose, fructose, and glucose molecule in the reaction mixture, into .the active site of immobilizedinvertase. Consequently, hydrophilic microenvironment of immobilized invertase by polyethyleneimine coating obtained higher yield and productivity with increasing conversion than silanized and native invertase. Thus, this procedure optimized the microenvironment of immobilized invertase suitable for the enzymatic synthesis of methyl fructoside.

  • PDF

Enzymatic Synthesis of Meth.yl Fructoside by Immobilized Invertase (고정화 전화당 효소에 의한 메틸 프룩토시드의 합성)

  • 허주형;김해성
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.313-319
    • /
    • 1993
  • Methyl fructoside was synthesized from sucrose and methanol using an immobilized invertase. The enzyme was covalently bound by glutaraldehyde on porous silica coated with polyethyleneimine to give loading capacity of 120mg of invertase per one gram of dry porous silica and effective activity of 100U per one milligram of bound invertase. Polyethyleneimine coating imparted a hydrophillic character, good activity retention and high loading capacity to the surface of porous silica as well as hydrophillic microenviroment in the vicinity of bound invertase. The immobilized enzyme was formed into an alginate-enclosed silica bead to have enough activity for methyl fructoside synthesis from aqueous methanol-sucrose solution. Using the alginate-enclosed biocatalyst the yield of methyl fructoside was obtained as high as 55.9% from aqueous 30% (v/v) methanol and 0.291mo1/l sucrose with 2U/ml activity at $25^{\circ}C$, pH 4.8.

  • PDF

Kinetic and Energetic Parameters of Carob Wastes Fermentation by Saccharomyces cerevisiae: Crabtree Effect, Ethanol Toxicity, and Invertase Repression

  • Rodrigues, B.;Peinado, J.M.;Raposo, S.;Constantino, A.;Quintas, C.;Lima-Costa, M.E.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.837-844
    • /
    • 2015
  • Carob waste is a useful raw material for the second-generation ethanol because 50% of its dry weight is sucrose, glucose, and fructose. To optimize the process, we have studied the influence of the initial concentration of sugars on the fermentation performance of Saccharomyces cerevisiae. With initial sugar concentrations (S0 ) of 20 g/l, the yeasts were derepressed and the ethanol produced during the exponential phase was consumed in a diauxic phase. The rate of ethanol consumption decreased with increasing S0 and disappeared at 250 g/l when the Crabtree effect was complete and almost all the sugar consumed was transformed into ethanol with a yield factor of 0.42 g/g. Sucrose hydrolysis was delayed at high S0 because of glucose repression of invertase synthesis, which was triggered at concentrations above 40 g/l. At S0 higher than 250 g/l, even when glucose had been exhausted, sucrose was hydrolyzed very slowly, probably due to an inhibition at this low water activity. Although with lower metabolic rates and longer times of fermentation, 250 g/l is considered the optimal initial concentration because it avoids the diauxic consumption of ethanol and maintains enough invertase activity to consume all the sucrose, and also avoids the inhibitions due to lower water activities at higher S0 .

A Study on Glycoside Synthesis Using Alginate-enclosed Microspheres (Alginate-enclosed Microspheres를 이용한 배당체 합성에 관한 연구)

  • 김해성;김우식
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.320-327
    • /
    • 1993
  • Latex microspheres of styrene/acryl copolymer with acrylamide functional group were used for the stable covalent immobilization of an enzyme applicable for enzymatic synthesis of glycoside. The latex microspheres were coated with polyethyleneimine to establish structural and functional properties relevant to the covalent Immobilization with a high retention of activity. Polythyleneimine-coated microspheres satisfactorily immobilized the invertase for methyl fructoside synthesis, and model reaction were formed into alginate-enclosed microspheres biocatalyst. Using the alginate-enclosed microspheres biocatalyst, the yield of model glycoside was obtained as high as 52.2% at concentration of aqueous 30%(v/v) methanol and 0.291mo1/1 sucrose solution with 2U/ml of activity. The present study showed that the latex microspheres were successfully applied to enzymatic synthesis of glycoside.

  • PDF

Comparison of Free Sugar Content and Related Enzyme Activities on Different Parts of 'Changhowon Hwangdo' Peach Fruit (복숭아 '장호원황도' 과실의 부위별 유리당 함량 및 관련 효소활성 비교)

  • Kim, Sung-Jong;Park, Hye-Young
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.387-393
    • /
    • 2010
  • The free sugar content and related enzymes of four different parts, inner, outer, stylar end and stem end, of 'Changhowon Hwangdo' peach ($Prunus$ $persica$, L. Batsch) fruit were compared from August to September in 2006, i.e., from 120 to 150 days after full bloom (DAFB). The soluble solids content (SSC) of stylar end was the highest among the four fruit parts at 150 DAFB. Changes of free sugar content were similar to that of SSC in the four parts. The starch content at the stylar end was the highest at 120 DAFB, while all the other parts showed low starch contents at 150 DAFB. The free sugar composition of peach changed during fruit development. The sucrose was low at 120 DAFB and increased gradually in all parts of peach fruit. On the contrary glucose, fructose and sorbitol decreased with fruit development. The free sugar contents and related enzymes activities were investigated during fruit development. The rapid increase of sucrose contents during fruit development was more affected by sucrose synthase than sucrose phosphate synthase. Activity of SS in the four fruit parts increased continuously over the fruit development period, but activity of acid invertase showed a downward trend. This study found that the free sugar content was affected by enzyme activity for the synthesis or the cleavage. However, it was very difficult to explain sugar accumulation of peach segments with related-enzymes.