• Title/Summary/Keyword: inverse optimal consensus

Search Result 2, Processing Time 0.021 seconds

Inverse Optimal Design of Formation/Velocity Consensus Protocol for Mobile Robots Based on LQ Inverse Optimal Second-order Consensus (LQ-역최적 2차 일치제어에 기반한 이동로봇에 대한 대형·속도일치 프로토콜의 역최적 설계)

  • Lee, Jae Young;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.434-441
    • /
    • 2015
  • In this paper, we propose an inverse optimal distributed protocol for the formation and velocity consensus of nonholonomic mobile robots. The communication among mobile robots is described by a simple undirected graph, and the mobile robots' kinematics are considered. The group of mobile robots driven by the proposed protocols asymptotically achieves the desired formation and group velocity in an inverse optimal fashion. The design of the protocols is based on dynamic feedback linearization and the proposed linear quadratic (LQ) inverse optimal second-order consensus protocol. A numerical simulation is given to verify the effectiveness of the proposed scheme.

LQ Inverse Optimal Consensus Protocol for Continuous-Time Multi-Agent Systems and Its Application to Formation Control (연속시간 다개체 시스템에 대한 LQ-역최적 상태일치 프로토콜 및 군집제어 응용)

  • Lee, Jae Young;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.526-532
    • /
    • 2014
  • In this paper, we present and analyze a LQ (Linear Quadratic) inverse optimal state-consensus protocol for continuous-time multi-agent systems with undirected graph topology. By Lyapunov analysis of the state-consensus error dynamics, we show the sufficient conditions on the algebraic connectivity of the graph to guarantee LQ inverse optimality and closed-loop stability. A more relaxed stability condition is also provided in terms of the algebraic connectivity. Finally, a formation control protocol for multiple mobile robots is proposed based on the target LQ inverse optimal consensus protocol, and the simulation results are provided to verify the performance of the proposed LQ inverse formation control method.