• Title/Summary/Keyword: inverse learning

Search Result 205, Processing Time 0.026 seconds

Computationally efficient variational Bayesian method for PAPR reduction in multiuser MIMO-OFDM systems

  • Singh, Davinder;Sarin, Rakesh Kumar
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.298-307
    • /
    • 2019
  • This paper investigates the use of the inverse-free sparse Bayesian learning (SBL) approach for peak-to-average power ratio (PAPR) reduction in orthogonal frequency-division multiplexing (OFDM)-based multiuser massive multiple-input multiple-output (MIMO) systems. The Bayesian inference method employs a truncated Gaussian mixture prior for the sought-after low-PAPR signal. To learn the prior signal, associated hyperparameters and underlying statistical parameters, we use the variational expectation-maximization (EM) iterative algorithm. The matrix inversion involved in the expectation step (E-step) is averted by invoking a relaxed evidence lower bound (relaxed-ELBO). The resulting inverse-free SBL algorithm has a much lower complexity than the standard SBL algorithm. Numerical experiments confirm the substantial improvement over existing methods in terms of PAPR reduction for different MIMO configurations.

Predicting numeric ratings for Google apps using text features and ensemble learning

  • Umer, Muhammad;Ashraf, Imran;Mehmood, Arif;Ullah, Saleem;Choi, Gyu Sang
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.95-108
    • /
    • 2021
  • Application (app) ratings are feedback provided voluntarily by users and serve as important evaluation criteria for apps. However, these ratings can often be biased owing to insufficient or missing votes. Additionally, significant differences have been observed between numeric ratings and user reviews. This study aims to predict the numeric ratings of Google apps using machine learning classifiers. It exploits numeric app ratings provided by users as training data and returns authentic mobile app ratings by analyzing user reviews. An ensemble learning model is proposed for this purpose that considers term frequency/inverse document frequency (TF/IDF) features. Three TF/IDF features, including unigrams, bigrams, and trigrams, were used. The dataset was scraped from the Google Play store, extracting data from 14 different app categories. Biased and unbiased user ratings were discriminated using TextBlob analysis to formulate the ground truth, from which the classifier prediction accuracy was then evaluated. The results demonstrate the high potential for machine learning-based classifiers to predict authentic numeric ratings based on actual user reviews.

LSTM Android Malicious Behavior Analysis Based on Feature Weighting

  • Yang, Qing;Wang, Xiaoliang;Zheng, Jing;Ge, Wenqi;Bai, Ming;Jiang, Frank
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2188-2203
    • /
    • 2021
  • With the rapid development of mobile Internet, smart phones have been widely popularized, among which Android platform dominates. Due to it is open source, malware on the Android platform is rampant. In order to improve the efficiency of malware detection, this paper proposes deep learning Android malicious detection system based on behavior features. First of all, the detection system adopts the static analysis method to extract different types of behavior features from Android applications, and extract sensitive behavior features through Term frequency-inverse Document Frequency algorithm for each extracted behavior feature to construct detection features through unified abstract expression. Secondly, Long Short-Term Memory neural network model is established to select and learn from the extracted attributes and the learned attributes are used to detect Android malicious applications, Analysis and further optimization of the application behavior parameters, so as to build a deep learning Android malicious detection method based on feature analysis. We use different types of features to evaluate our method and compare it with various machine learning-based methods. Study shows that it outperforms most existing machine learning based approaches and detects 95.31% of the malware.

Exploring modern machine learning methods to improve causal-effect estimation

  • Kim, Yeji;Choi, Taehwa;Choi, Sangbum
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.177-191
    • /
    • 2022
  • This paper addresses the use of machine learning methods for causal estimation of treatment effects from observational data. Even though conducting randomized experimental trials is a gold standard to reveal potential causal relationships, observational study is another rich source for investigation of exposure effects, for example, in the research of comparative effectiveness and safety of treatments, where the causal effect can be identified if covariates contain all confounding variables. In this context, statistical regression models for the expected outcome and the probability of treatment are often imposed, which can be combined in a clever way to yield more efficient and robust causal estimators. Recently, targeted maximum likelihood estimation and causal random forest is proposed and extensively studied for the use of data-adaptive regression in estimation of causal inference parameters. Machine learning methods are a natural choice in these settings to improve the quality of the final estimate of the treatment effect. We explore how we can adapt the design and training of several machine learning algorithms for causal inference and study their finite-sample performance through simulation experiments under various scenarios. Application to the percutaneous coronary intervention (PCI) data shows that these adaptations can improve simple linear regression-based methods.

Classifying Sub-Categories of Apartment Defect Repair Tasks: A Machine Learning Approach (아파트 하자 보수 시설공사 세부공종 머신러닝 분류 시스템에 관한 연구)

  • Kim, Eunhye;Ji, HongGeun;Kim, Jina;Park, Eunil;Ohm, Jay Y.
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.9
    • /
    • pp.359-366
    • /
    • 2021
  • A number of construction companies in Korea invest considerable human and financial resources to construct a system for managing apartment defect data and for categorizing repair tasks. Thus, this study proposes machine learning models to automatically classify defect complaint text-data into one of the sub categories of 'finishing work' (i.e., one of the defect repair tasks). In the proposed models, we employed two word representation methods (Bag-of-words, Term Frequency-Inverse Document Frequency (TF-IDF)) and two machine learning classifiers (Support Vector Machine, Random Forest). In particular, we conducted both binary- and multi- classification tasks to classify 9 sub categories of finishing work: home appliance installation work, paperwork, painting work, plastering work, interior masonry work, plaster finishing work, indoor furniture installation work, kitchen facility installation work, and tiling work. The machine learning classifiers using the TF-IDF representation method and Random Forest classification achieved more than 90% accuracy, precision, recall, and F1 score. We shed light on the possibility of constructing automated defect classification systems based on the proposed machine learning models.

Deep Learning-Based Motion Reconstruction Using Tracker Sensors (트래커를 활용한 딥러닝 기반 실시간 전신 동작 복원 )

  • Hyunseok Kim;Kyungwon Kang;Gangrae Park;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.5
    • /
    • pp.11-20
    • /
    • 2023
  • In this paper, we propose a novel deep learning-based motion reconstruction approach that facilitates the generation of full-body motions, including finger motions, while also enabling the online adjustment of motion generation delays. The proposed method combines the Vive Tracker with a deep learning method to achieve more accurate motion reconstruction while effectively mitigating foot skating issues through the use of an Inverse Kinematics (IK) solver. The proposed method utilizes a trained AutoEncoder to reconstruct character body motions using tracker data in real-time while offering the flexibility to adjust motion generation delays as needed. To generate hand motions suitable for the reconstructed body motion, we employ a Fully Connected Network (FCN). By combining the reconstructed body motion from the AutoEncoder with the hand motions generated by the FCN, we can generate full-body motions of characters that include hand movements. In order to alleviate foot skating issues in motions generated by deep learning-based methods, we use an IK solver. By setting the trackers located near the character's feet as end-effectors for the IK solver, our method precisely controls and corrects the character's foot movements, thereby enhancing the overall accuracy of the generated motions. Through experiments, we validate the accuracy of motion generation in the proposed deep learning-based motion reconstruction scheme, as well as the ability to adjust latency based on user input. Additionally, we assess the correction performance by comparing motions with the IK solver applied to those without it, focusing particularly on how it addresses the foot skating issue in the generated full-body motions.

Singularity Avoidance Path Planning on Cooperative Task of Dual Manipulator Using DDPG Algorithm (DDPG 알고리즘을 이용한 양팔 매니퓰레이터의 협동작업 경로상의 특이점 회피 경로 계획)

  • Lee, Jonghak;Kim, Kyeongsoo;Kim, Yunjae;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.137-146
    • /
    • 2021
  • When controlling manipulator, degree of freedom is lost in singularity so specific joint velocity does not propagate to the end effector. In addition, control problem occurs because jacobian inverse matrix can not be calculated. To avoid singularity, we apply Deep Deterministic Policy Gradient(DDPG), algorithm of reinforcement learning that rewards behavior according to actions then determines high-reward actions in simulation. DDPG uses off-policy that uses 𝝐-greedy policy for selecting action of current time step and greed policy for the next step. In the simulation, learning is given by negative reward when moving near singulairty, and positive reward when moving away from the singularity and moving to target point. The reward equation consists of distance to target point and singularity, manipulability, and arrival flag. Dual arm manipulators hold long rod at the same time and conduct experiments to avoid singularity by simulated path. In the learning process, if object to be avoided is set as a space rather than point, it is expected that avoidance of obstacles will be possible in future research.

The Role of L1 and L2 in an L3-speaking Class

  • Kim, Sun-Young
    • Cross-Cultural Studies
    • /
    • v.24
    • /
    • pp.170-183
    • /
    • 2011
  • This study explored how a Chinese college student who previously had not reached a threshold level of Korean proficiency used L1 (Chinese) and L2 (English) as a tool to socialize into Korean (L3) culture of learning over the course of study. From a perspective of language socialization, this study examined the cross-linguistic influence of L1 and L2 on the L3 acquisition process by tracing an approach to language learning and practices taken by the Chinese student as a case study. Data were collected through three methods; interview protocols, various types of written texts, and observations. The results showed that the student used English as a means to negotiate difficulties and expertise by empowering her L2 exposure during the classroom practices. Her ways of using L2 in oral practices could be characterized as the 'Inverse U-shape' pattern, under which she increased L2 exposure at the early stage of the study and shifted the intermediate language to L3 at the later stage of the study. When it comes to the language use in written practices, the sequence of "L2-L1-L3" use gradually changed to the "L2-L3" sequence over time, signifying the importance of interaction between L2 and L3. However, the use of her native language (L1) in a Korean-speaking classroom was limited to a certain aspect of literacy practices (i.e., vocabulary learning or translation). This study argues for L2 communication channel in cross-cultural classrooms as a key factor to determine sustainable learning growth.

Robot Trajectory Control using Prefilter Type Chaotic Neural Networks Compensator (Prefilter 형태의 카오틱 신경망을 이용한 로봇 경로 제어)

  • 강원기;최운하김상희
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.263-266
    • /
    • 1998
  • This paper propose a prefilter type inverse control algorithm using chaotic neural networks. Since the chaotic neural networks show robust characteristics in approximation and adaptive learning for nonlinear dynamic system, the chaotic neural networks are suitable for controlling robotic manipulators. The structure of the proposed prefilter type controller compensate velocity of the PD controller. To estimate the proposed controller, we implemented to the Cartesian space control of three-axis PUMA robot and compared the final result with recurrent neural network(RNN) controller.

  • PDF

Predicting the 2-dimensional airfoil by using machine learning methods

  • Thinakaran, K.;Rajasekar, R.;Santhi, K.;Nalini, M.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.291-304
    • /
    • 2020
  • In this paper, we develop models to design the airfoil using Multilayer Feed-forward Artificial Neural Network (MFANN) and Support Vector Regression model (SVR). The aerodynamic coefficients corresponding to series of airfoil are stored in a database along with the airfoil coordinates. A neural network is created with aerodynamic coefficient as input to produce the airfoil coordinates as output. The performance of the models have been evaluated. The results show that the SVR model yields the lowest prediction error.