• Title/Summary/Keyword: inverse distance weighting

Search Result 70, Processing Time 0.022 seconds

A Proposal of an Interpolation Method of Missing Wind Velocity Data in Writing a Typical Weather Data (표준기상데이터 작성 시 누락된 풍속 데이터의 보간 방법 제안)

  • Park, So-Woo;Kim, Joo-wook;Song, Doo-sam
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.79-91
    • /
    • 2017
  • The meteorological data of 1 hour interval are required to write a typical weather data for building energy simulation. However, many meterological data are missing and the interpolation method to recover the missing data is required. Especially, lots of meterological data are replicated by linear interpolation method because the changes are not significant. While, the wind velocity fluctuates with the time or locations, so linear interpolation method is not appropriate in interpolation of the wind velocity data. In this study, three interpolation methods, using surrounding wind velocity data, Inverse Distance Weighting (IDW), Revised Inverse Distance Weighting (IDW-r), were analyzed considering the characteristics of wind velocity. The Revised Inverse Distance Weighting method, proposed in this study, showed the highest reliability in restoration of the wind velocity data among the analyzed methods.

Development of a Virtual Reference Station-based Correction Generation Technique Using Enhanced Inverse Distance Weighting

  • Tae, Hyunu;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.79-85
    • /
    • 2015
  • Existing Differential GPS (DGPS) pseudorange correction (PRC) generation techniques based on a virtual reference station cannot effectively assign a weighting factor if the baseline distance between a user and a reference station is not long enough. In this study, a virtual reference station DGPS PRC generation technique was developed based on an enhanced inverse distance weighting method using an exponential function that can maximize a small baseline distance difference due to the dense arrangement of DGPS reference stations in South Korea, and its positioning performance was validated. For the performance verification, the performance of the model developed in this study (EIDW) was compared with those of typical inverse distance weighting (IDW), first- and second-order multiple linear regression analyses (Planar 1 and 2), the model of Abousalem (1996) (Ab_EXP), and the model of Kim (2013) (Kim_EXP). The model developed in the present study had a horizontal accuracy of 53 cm, and the positioning based on the second-order multiple linear regression analysis that showed the highest positioning accuracy among the existing models had a horizontal accuracy of 51 cm, indicating that they have similar levels of performance. Also, when positioning was performed using five reference stations, the horizontal accuracy of the developed model improved by 8 ~ 42% compared to those of the existing models. In particular, the bias was improved by up to 27 cm.

Modeling the Natural Occurrence of Selected Dipterocarp Genera in Sarawak, Borneo

  • Teo, Stephen;Phua, Mui-How
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.3
    • /
    • pp.170-178
    • /
    • 2012
  • Dipterocarps or Dipterocarpaceae is a commercially important timber producing and dominant keystone tree family in the rain forests of Borneo. Borneo's landscape is changing at an unprecedented rate in recent years which affects this important biodiversity. This paper attempts to model the natural occurrence (distribution including those areas with natural forests before being converted to other land uses as opposed to current distribution) of dipterocarp species in Sarawak which is important for forest biodiversity conservation and management. Local modeling method of Inverse Distance Weighting was compared with commonly used statistical method (Binary Logistic Regression) to build the best natural distribution models for three genera (12 species) of dipterocarps. Database of species occurrence data and pseudoabsence data were constructed and divided into two halves for model building and validation. For logistic regression modeling, climatic, topographical and edaphic parameters were used. Proxy variables were used to represent the parameters which were highly (p>0.75) correlated to avoid over-fitting. The results show that Inverse Distance Weighting produced the best and consistent prediction with an average accuracy of over 80%. This study demonstrates that local interpolation method can be used for the modeling of natural distribution of dipterocarp species. The Inverse Distance Weighted was proven a better method and the possible reasons are discussed.

Application of Kriging and Inverse Distance Weighting Method for the Estimation of Geo-Layer of Songdo Area in Incheon (인천 송도지역 지층분포 추정을 위한 크리깅과 역거리가중치법의 적용)

  • Kim, Dong-Hee;Ryu, Dong-Woo;Choi, Young-Min;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.5-19
    • /
    • 2010
  • Geo-layer information is important to determine pile length and estimate residual settlement in the construction site. An overall spatial distribution of geo-layers in the entire construction site can be predicted using drill-log information. In this study, the geo-layer distribution at Song-do area was estimated by kriging and inverse distance weighting methods, and a cross validation was adopted to verify the reliability of estimation results. The analysis results indicate that the best fitted theoretical variogram model to the experimental variogram does not always provide the most reliable estimation in the kriging method. The proper $\alpha$ value of inverse distance weighting method must be determined by types of geo-layer, because the $\alpha$ value is affected by types of geo-layer. Results of the kriging method show more reliable results than those of inverse distance weighting method, and the structure of geo-layer distribution could be evaluated by variogram in the kriging method.

A Study on the Reviesd Methods of Missing Rainfall Data for Real-time Forecasting Systems (실시간 예보 시스템을 위한 우량자료 보정 기법 연구)

  • Han, Myoung-Sun;Kim, Chung-Soo;Kim, Hyoung-Seop;Kim, Hwi-Rin
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.2
    • /
    • pp.131-139
    • /
    • 2009
  • The weather accidents by global warming effect are increasing rapidly whole world. Flood forcasting system and hydrological database are operated by almost all the countries in the world. An objective of this study is to research revised methods of missing rainfall data and find more effective revised method for this operating system. 194 rainfall data of the Han river basin is used. Arithmetic average method, coefficient of correlation weighting method and inverse distance weighting method are compared to estimate revised methods. The result from the analysis shows that coefficient of correlation weighting method is best quantitatively among the 3 methods.

A Spatial Interpolation Model for Daily Minimum Temperature over Mountainous Regions (산악지대의 일 최저기온 공간내삽모형)

  • Yun Jin-Il;Choi Jae-Yeon;Yoon Young-Kwan;Chung Uran
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.4
    • /
    • pp.175-182
    • /
    • 2000
  • Spatial interpolation of daily temperature forecasts and observations issued by public weather services is frequently required to make them applicable to agricultural activities and modeling tasks. In contrast to the long term averages like monthly normals, terrain effects are not considered in most spatial interpolations for short term temperatures. This may cause erroneous results in mountainous regions where the observation network hardly covers full features of the complicated terrain. We developed a spatial interpolation model for daily minimum temperature which combines inverse distance squared weighting and elevation difference correction. This model uses a time dependent function for 'mountain slope lapse rate', which can be derived from regression analyses of the station observations with respect to the geographical and topographical features of the surroundings including the station elevation. We applied this model to interpolation of daily minimum temperature over the mountainous Korean Peninsula using 63 standard weather station data. For the first step, a primitive temperature surface was interpolated by inverse distance squared weighting of the 63 point data. Next, a virtual elevation surface was reconstructed by spatially interpolating the 63 station elevation data and subtracted from the elevation surface of a digital elevation model with 1 km grid spacing to obtain the elevation difference at each grid cell. Final estimates of daily minimum temperature at all the grid cells were obtained by applying the calculated daily lapse rate to the elevation difference and adjusting the inverse distance weighted estimates. Independent, measured data sets from 267 automated weather station locations were used to calculate the estimation errors on 12 dates, randomly selected one for each month in 1999. Analysis of 3 terms of estimation errors (mean error, mean absolute error, and root mean squared error) indicates a substantial improvement over the inverse distance squared weighting.

  • PDF

Efficient Processing of Huge Airborne Laser Scanned Data Utilizing Parallel Computing and Virtual Grid (병렬처리와 가상격자를 이용한 대용량 항공 레이저 스캔 자료의 효율적인 처리)

  • Han, Soo-Hee;Heo, Joon;Lkhagva, Enkhbaatar
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.4
    • /
    • pp.21-26
    • /
    • 2008
  • A method for processing huge airborne laser scanned data using parallel computing and virtual grid is proposed and the method is tested by generating raster DSM(Digital Surface Model) with IDW(Inverse Distance Weighting). Parallelism is involved for fast interpolation of huge point data and virtual grid is adopted for enhancing searching efficiency of irregularly distributed point data. Processing time was checked for the method using cluster constituted of one master node and six slave nodes, resulting in efficiency near to 1 and load scalability property. Also large data which cannot be processed with a sole system was processed with cluster system.

  • PDF

Estimation of Methane Emission Flux Using a Laser Methane Detector at a Solid Waste Landfill (레이저메탄검지기를 활용한 폐기물매립지 표면발생량 산정에 관한 연구)

  • Kang, Jong-Yun;Park, Jin-Kyu;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.3
    • /
    • pp.78-84
    • /
    • 2015
  • The aim of this study was to evaluate methane emission flux based on spatial methane concentration using laser methane detector, and geospatial methodology (Inverse distance weighting) at a landfill. The obtained results showed that the spatial methane concentrations were in good agreement with the methane emission fluxes. Thus, it was concluded that the methane emission flux could be derived from spatial methane concentrations. In addition, the results of the geospatial calculations showed that 12.85% of the total area contributed more than 42.21% of total flux. This suggested that the geospatial methodology might be essential in chamber method to determine accurate methane emission fluxes from landfills.

Retrieval of High-Resolution Grid Type Visibility Data in South Korea Using Inverse Distance Weighting and Kriging

  • Kang, Taeho;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.97-110
    • /
    • 2021
  • Fog can cause large-scale human and economic damages, including traffic systems and agriculture. So, Korea Meteorological Administration is operating about 290 visibility meters to improve the observation level of fog. However, it is still insufficient to detect very localized fog. In this study, high-resolution grid-type visibility data were retrieved from irregularly distributed visibility data across the country. To this end, three objective analysis techniques (Inverse Distance Weighting (IDW), Ordinary Kriging (OK) and Universal Kriging (UK)) were used. To find the best method and parameters, sensitivity test was performed for the effective radius, power parameter and variogram model that affect the level of objective analysis. Also, the effect of data distribution characteristics (level of normality) on the performance level of objective analysis was evaluated. IDW showed a relatively high level of objective analysis in terms of bias, RMSE and correlation, and the performance is inversely proportional to the effective radius and power parameter. However, the two Krigings showed relatively low level of objective analysis, in particular, greatly weakened the variability of the variables, although the level of output was different depending on the variogram model used. As the level of objective analysis is greatly influenced by the distribution characteristics of data, power, and models used, care should be taken when selecting objective analysis techniques and parameters.

STUDY ON STATISTICAL ESTIMATION OF IRRADIANT CONTRAST (통계적 방법을 이용한 적외선 신호 대비값 계산 방법 연구)

  • Han, K.I.;Choi, J.H.;Ha, N.K.;Jang, H.S.;Lee, S.H.;Kim, D.G.;Kim, T.K.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.37-42
    • /
    • 2017
  • Infrared signals are frequently used to detect objects exposed to wide variety of environmental conditions. Detection by infrared signature is accomplished by distinguishing objects by using the IR radiant contrast between objects and the background. There are several methods of estimating the IR radiant contrast. The inverse distance weighting method, which is one of the IR radiant contrast estimation method using the effect of distance from objects, is known to be an effective way to analyze radiant contrast for complex backgrounds. However this method has a disadvantage of requiring a long calculation time. In this study we propose a statistical method of estimating the IR radiant contrast by using randomly selected pixels of arbitrary number among background pixels to reduce calculation time. Some measured IR images in MWIR and LWIR regions are used to test the applicability of the method proposed and we found that the proposed method is very effective in determining the IR radiant contrast showing very rapid estimation with minar accuracy loss.