• 제목/요약/키워드: inverse coefficient

검색결과 317건 처리시간 0.026초

Maximum Likelihood Estimator in Two Inverse Gaussian Populatoins with Unknown Common Coefficient of Variation

  • Park, Byungjin;Kim, Keeyoung
    • Journal of the Korean Statistical Society
    • /
    • 제30권1호
    • /
    • pp.99-113
    • /
    • 2001
  • This paper deals with the problem of estimating the means in two inverse Gaussian populations with equal but unknown coefficient of variation. The maximum likelihood estimators are derived by solving a cubic equation and their asymptotic variances are presented for comparative purpose. Monte-Carlo simulation is conducted to investigate the efficiency of the estimators relative to the sample means over a wide range of values for the sample size and the coefficient of variation. The effect on this efficiency under the departure from the assumption of common coefficient of variation is also studied.

  • PDF

역해석을 이용한 구형 공간 내의 산란계수 추정에 관한 연구 (A Study on the Estimation of Scattering Coefficient in the Spheres Using an Inverse Analysis)

  • 김우승;곽동성
    • 대한기계학회논문집B
    • /
    • 제23권3호
    • /
    • pp.364-373
    • /
    • 1999
  • A combination of conjugate gradient and Levenberg-Marquardt method is used to estimate the spatially varying scattering coefficient, ${\sigma}(r)$, in the solid and hollow spheres by utilizing the measured transmitted beams from the solution of an inverse analysis. The direct radiation problem associated with the inverse problem is solved by using the $S_{12}-approximation$ of the discrete ordinates method. The accuracy of the computations increased when the results from the conjugate gradient method are used as an initial guess for the Levenberg-Marquardt method of minimization. Optical thickness up to ${\tau}_0=3$ is used for the computations. Three different values of standard deviation are considered to examine the accuracy of the solution from the inverse analysis.

Inverse 해석에 의한 열전달계수 분포의 결정 (Evaluation of Heat Transfer Coefficient Distribution by Inverse Analysis)

  • 김흥규;오수익
    • 대한기계학회논문집A
    • /
    • 제20권12호
    • /
    • pp.3856-3870
    • /
    • 1996
  • The objective of this study is to evaluate heat transfer coefficient distribution during heat treatment by inverse analysis. As a first procedure, the inverse heat transfer formulation by using two dimensional finite element method has been developed. The formulation can handlematerial nonlinearity and allow arbitrary placement and number of sensors. The formulation was verified through application to simulated exact and inexact measurements.

A TRACE-TYPE FUNCTIONAL METHOD FOR DETERMINATION OF A COEFFICIENT IN AN INVERSE HEAT CONDUCTION PROBLEM

  • WEN, JIN;CHENG, JUN-FENG
    • Journal of applied mathematics & informatics
    • /
    • 제35권5_6호
    • /
    • pp.439-447
    • /
    • 2017
  • This paper investigates the inverse problem of determining an unknown heat radiative coefficient, which is only time-dependent. This is an ill-posed problem, that is, small errors in data may cause huge deviations in determining solution. In this paper, the existence and uniqueness of the problem is established by the second Volterra integral equation theory, and the method of trace-type functional formulation combined with finite difference scheme is studied. One typical numerical example using the proposed method is illustrated and discussed.

DETERMINATION OF THE FLEXURAL RIGIDITY OF A BEAM FROM LIMITED BOUNDARY MEASUREMENTS

  • LESNIC DANIEL
    • Journal of applied mathematics & informatics
    • /
    • 제20권1_2호
    • /
    • pp.17-34
    • /
    • 2006
  • Inverse coefficient identification problems associated with the fourth-order Sturm-Liouville operator in the steady state Euler-Bernoulli beam equation are investigated. Unlike previous studies in which spectral data are used as additional information, in this paper only boundary information is used, hence non-destructive tests can be employed in practical applications.

기구학적 조인트에서 마찰력을 고려한 구속 다물체계의 역동역학 해석 (Inverse Dynamic Analysis of Constrained Multibody Systems Considering Friction Forces on Kinematic Joints)

  • 박정훈;유홍희;황요하;배대성
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.2050-2058
    • /
    • 2000
  • A method for the inverse dynamic analysis of constrained multibody systems considering friction forces acting on kinematic joints is presented in this paper. The stiction and the sliding which represent zero and non-zero relative motions are considered during the inverse dynamic analysis. Actuating forces to control the position or the orientation of constrained multibody systems are usually calculated in the inverse dynamic analysis. An iterative procedure need to be employed to calculate the actuating forces when the friction is considered. Furthermore, the actuating forces are not uniquely determined during the stiction. These difficulties are resolved by the method presented in this paper.

근사역동역학을 이용한 스튜어트플랫폼의 위치제어 (Position Control of a Stewart Platform Using Approximate Inverse Dynamics)

  • 이세한;송재복;최우천;홍대희
    • 제어로봇시스템학회논문지
    • /
    • 제7권12호
    • /
    • pp.993-1000
    • /
    • 2001
  • Configuration-dependent nonlinear coefficient matrices in the dynamic equation of robot manipulator impose computa- tional burden in real-time implementation of tracking control based on the inverse dynamics controller. However, parallel manipulators such as Stewart platform have relatively small workspace compared to serial manipulators. Based on the characteristics of small motion range. nonlinear coefficient matrices can be approxiamted to constant ones. The modeling errors caused by such approximation are compensated for by H-infinity controller that treats the modeling errors disturbance. The proposed inverse dynamics controller with approximate dynamics combined with H-infinity control shows good tracking performance even for fast tracking control in which computation of full inverse dynamics is not easy to implement.

  • PDF

평면충돌제트에 의한 고온 판 냉각과정의 열전달 해석 (Analysis of Heat Transfer in Cooling of a Hot Plate by Planar Impingement Jet)

  • 안대환;김동식
    • 대한기계학회논문집B
    • /
    • 제33권1호
    • /
    • pp.17-27
    • /
    • 2009
  • Water jet impingement cooling is used to remove heat from high-temperature surfaces such as hot steel plates in the steel manufacturing process (thermo-mechanical cooling process; TMCP). In those processes, uniform cooling is the most critical factor to ensure high strength steel and good quality. In this study, experiments are performed to measure the heat transfer coefficient together with the inverse heat conduction problem (IHCP) analysis for a plate cooled by planar water jet. In the inverse heat transfer analysis, spatial and temporal variations of heat transfer coefficient, with no information regarding its functional form, are determined by employing the conjugate gradient method with an adjoint problem. To estimate the two dimensional distribution of heat transfer coefficient and heat flux for planar waterjet cooling, eight thermo-couple are installed inside the plate. The results show that heat transfer coefficient is approximately uniform in the span-wise direction in the early stage of cooling. In the later stage where the forced-convection effect is important, the heat transfer coefficient becomes larger in the edge region. The surface temperature vs. heat flux characteristics are also investigated for the entire boiling regimes. In addition, the heat transfer rate for the two different plate geometries are compared at the same Reynolds number.

최적화 기법을 활용한 열전달계수의 측정 (A study on the Evaluation of Heat Transfer Coefficient by Optimization Algorithm)

  • 김정태;임채호;최정길
    • 소성∙가공
    • /
    • 제15권9호
    • /
    • pp.679-685
    • /
    • 2006
  • New method for evaluation of heat transfer coefficient is proposed. In general, many researchers have been studied about inverse problem in order to calculate the heat transfer coefficient on three-dimensional heat conduction problem. But they can get the time-dependent heat transfer coefficient only through inverse problem. In order to acquire temperature-dependent heat transfer coefficient, it requires much time for numerous repetitive calculation and inconvenient manual modification. In order to solve these problems, we are using the SQP(Sequential Quadratic Programming) as an optimization algorithm. When the temperature history is given by experiment, the optimization algorithm can evaluate the temperature-dependent heat transfer coefficient with automatic repetitive calculation until difference between calculated temperature history and experimental ones is minimized. Finally, temperature-dependent heat transfer coefficient evaluated by developed program can used on various heat transfer problem.

새로운 일반화 역행렬법에 의한 SPOT PAN 화상 데이터를 이용한 Landsat TM 화상이 공간해상도 개선 (Spatial Resolution Improvement of landsat TM Images Using a SPOT PAN Image Data Based on the New Generalized Inverse Matrix Method)

  • 서용수;이건일
    • 전자공학회논문지B
    • /
    • 제31B권8호
    • /
    • pp.147-159
    • /
    • 1994
  • The performance of the improvement method of spatial resolution for satellite images based on the generalized inverse matrix is superior to the conventional methods. But, this method calculates the coefficient values for extracting the spatial information from the relation between a small pixel and large pixels. Accordingly it has the problem of remaining the blocky patterns at the result image. In this paper, a new generalized inverse matrix method is proposed which is different in the calculation method of coefficient values for extracting the spatial information. In this proposed metod, it calculates the coefficient values for extracting the spatial information from the relation between a small pixel and small pixels. Consequently it can improve the spatial resolution more efficiently without remaining the blocky patterns at the result image. The effectiveness of the proposed method is varified by simulation experiments with real TM image data.

  • PDF