• Title/Summary/Keyword: inverse Gaussian

Search Result 112, Processing Time 0.022 seconds

Maximum Likelihood Estimator in Two Inverse Gaussian Populatoins with Unknown Common Coefficient of Variation

  • Park, Byungjin;Kim, Keeyoung
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.1
    • /
    • pp.99-113
    • /
    • 2001
  • This paper deals with the problem of estimating the means in two inverse Gaussian populations with equal but unknown coefficient of variation. The maximum likelihood estimators are derived by solving a cubic equation and their asymptotic variances are presented for comparative purpose. Monte-Carlo simulation is conducted to investigate the efficiency of the estimators relative to the sample means over a wide range of values for the sample size and the coefficient of variation. The effect on this efficiency under the departure from the assumption of common coefficient of variation is also studied.

  • PDF

Noninformative Priors for the Common Scale Parameter in the Inverse Gaussian Distributions

  • Kang, Sang-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.981-992
    • /
    • 2004
  • In this paper, we develop the noninformative priors for the common scale parameter in the inverse gaussian distributions. We developed the first and second order matching priors. Next we revealed that the second order matching prior satisfies a HPD matching criterion. Also we showed that the second order matching prior matches alternative coverage probabilities up to the second order. It turns out that the one-at-a-time reference prior satisfies a second order matching criterion. Some simulation study is performed.

  • PDF

Comparison of parameter estimation methods for normal inverse Gaussian distribution

  • Yoon, Jeongyoen;Kim, Jiyeon;Song, Seongjoo
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.97-108
    • /
    • 2020
  • This paper compares several methods for estimating parameters of normal inverse Gaussian distribution. Ordinary maximum likelihood estimation and the method of moment estimation often do not work properly due to restrictions on parameters. We examine the performance of adjusted estimation methods along with the ordinary maximum likelihood estimation and the method of moment estimation by simulation and real data application. We also see the effect of the initial value in estimation methods. The simulation results show that the ordinary maximum likelihood estimator is significantly affected by the initial value; in addition, the adjusted estimators have smaller root mean square error than ordinary estimators as well as less impact on the initial value. With real datasets, we obtain similar results to what we see in simulation studies. Based on the results of simulation and real data application, we suggest using adjusted maximum likelihood estimates with adjusted method of moment estimates as initial values to estimate the parameters of normal inverse Gaussian distribution.

A Graphical Method to Assess Goodness-of-Fit for Inverse Gaussian Distribution (역가우스분포에 대한 적합도 평가를 위한 그래프 방법)

  • Choi, Byungjin
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.37-47
    • /
    • 2013
  • A Q-Q plot is an effective and convenient graphical method to assess a distributional assumption of data. The primary step in the construction of a Q-Q plot is to obtain a closed-form expression to represent the relation between observed quantiles and theoretical quantiles to be plotted in order that the points fall near the line y = a + bx. In this paper, we introduce a Q-Q plot to assess goodness-of-fit for inverse Gaussian distribution. The procedure is based on the distributional result that a transformed random variable $Y={\mid}\sqrt{\lambda}(X-{\mu})/{\mu}\sqrt{X}{\mid}$ follows a half-normal distribution with mean 0 and variance 1 when a random variable X has an inverse Gaussian distribution with location parameter ${\mu}$ and scale parameter ${\lambda}$. Simulations are performed to provide a guideline to interpret the pattern of points on the proposed inverse Gaussian Q-Q plot. An illustrative example is provided to show the usefulness of the inverse Gaussian Q-Q plot.

A numerical study of adjusted parameter estimation in normal inverse Gaussian distribution (Normal inverse Gaussian 분포에서 모수추정의 보정 방법 연구)

  • Yoon, Jeongyoen;Song, Seongjoo
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.741-752
    • /
    • 2016
  • Numerous studies have shown that normal inverse Gaussian (NIG) distribution adequately fits the empirical return distribution of financial securities. The estimation of parameters can also be done relatively easily, which makes the NIG distribution more useful in financial markets. The maximum likelihood estimation and the method of moments estimation are easy to implement; however, we may encounter a problem in practice when a relationship among the moments is violated. In this paper, we investigate this problem in the parameter estimation and try to find a simple solution through simulations. We examine the effect of our adjusted estimation method with real data: daily log returns of KOSPI, S&P500, FTSE and HANG SENG. We also checked the performance of our method by computing the value at risk of daily log return data. The results show that our method improves the stability of parameter estimation, while it retains a comparable performance in goodness-of-fit.

A REPRESENTATION FOR AN INVERSE GENERALIZED FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH GAUSSIAN PROCESS ON FUNCTION SPACE

  • Choi, Jae Gil
    • The Pure and Applied Mathematics
    • /
    • v.28 no.4
    • /
    • pp.281-296
    • /
    • 2021
  • In this paper, we suggest a representation for an inverse transform of the generalized Fourier-Feynman transform on the function space Ca,b[0, T]. The function space Ca,b[0, T] is induced by the generalized Brownian motion process with mean function a(t) and variance function b(t). To do this, we study the generalized Fourier-Feynman transform associated with the Gaussian process Ƶk of exponential-type functionals. We then establish that a composition of the Ƶk-generalized Fourier-Feynman transforms acts like an inverse generalized Fourier-Feynman transform.

Power Investigation of the Entropy-Based Test of Fit for Inverse Gaussian Distribution by the Information Discrimination Index

  • Choi, Byungjin
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.837-847
    • /
    • 2012
  • Inverse Gaussian distribution is widely used in applications to analyze and model right-skewed data. To assess the appropriateness of the distribution prior to data analysis, Mudholkar and Tian (2002) proposed an entropy-based test of fit. The test is based on the entropy power fraction(EPF) index suggested by Gokhale (1983). The simulation results report that the power of the entropy-based test is superior compared to other goodness-of-fit tests; however, this observation is based on the small-scale simulation results on the standard exponential, Weibull W(1; 2) and lognormal LN(0:5; 1) distributions. A large-scale simulation should be performed against various alternative distributions to evaluate the power of the entropy-based test; however, the use of a theoretical method is more effective to investigate the powers. In this paper, utilizing the information discrimination(ID) index defined by Ehsan et al. (1995) as a mathematical tool, we scrutinize the power of the entropy-based test. The selected alternative distributions are the gamma, Weibull and lognormal distributions, which are widely used in data analysis as an alternative to inverse Gaussian distribution. The study results are provided and an illustrative example is analyzed.

Likelihood Based Inference for the Shape Parameter of the Inverse Gaussian Distribution

  • Lee, Woo-Dong;Kang, Sang-Gil;Kim, Dong-Seok
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.655-666
    • /
    • 2008
  • Small sample likelihood based inference for the shape parameter of the inverse Gaussian distribution is the purpose of this paper. When shape parameter is of interest, the signed log-likelihood ratio statistic and the modified signed log-likelihood ratio statistic are derived. Hsieh (1990) gave a statistical inference for the shape parameter based on an exact method. Throughout simulation, we will compare the statistical properties of the proposed statistics to the statistic given by Hsieh (1990) in term of confidence interval and power of test. We also discuss a real data example.

Bayesian One-Sided Hypothesis Testing for Shape Parameter in Inverse Gaussian Distribution

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.3
    • /
    • pp.995-1006
    • /
    • 2008
  • This article deals with the one-sided hypothesis testing problem in inverse Gaussian distribution. We propose Bayesian hypothesis testing procedures for the one-sided hypotheses of the shape parameter under the noninformative prior. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the objective Bayesian hypothesis testing procedures based on the fractional Bayes factor, the median intrinsic Bayes factor and the encompassing intrinsic Bayes factor under the reference prior. Simulation study and a real data example are provided.

  • PDF

Noninformative priors for the common shape parameter of several inverse Gaussian distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.243-253
    • /
    • 2015
  • In this paper, we develop the noninformative priors for the common shape parameter of several inverse Gaussian distributions. Specially, we want to develop noninformative priors which satisfy certain objective criterion. The probability matching priors and reference priors of the common shape parameter will be developed. It turns out that the second order matching prior does not exist. The reference priors satisfy the first order matching criterion, but Jeffrey's prior is not the first order matching prior. We showed that the proposed reference prior matches the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.