• Title/Summary/Keyword: invariant

Search Result 2,158, Processing Time 0.029 seconds

Dependency of Tangential Friction Angle and Cohesion of Non-linear Failure Criteria on the Intermediate Principal Stress (비선형 암석 파괴조건식의 접선 마찰각과 점착력의 중간주응력 의존성)

  • Lee, Youn-Kyou;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.219-227
    • /
    • 2013
  • Although Mohr-Coulomb failure criterion has limitations in that it is a linear criterion and the effect of the intermediate principal stress on failure is ignored, this criterion has been widely accepted in rock mechanics design. In order to overcome these shortcomings, the Hoek-Brown failure criterion was introduced and recently a number of 3-D failure criteria incorporating the effect of the intermediate principal stress on failure have been proposed. However, in many rock mechanics designs, the possible failure of rock mass is still evaluated based on Mohr-Coulomb criterion and most of practitioners are accustomed to understanding the strength of rock mass in terms of the internal friction angle and cohesion. Therefore, if the equivalent Mohr-Coulomb strength parameters of the advanced failure criteria are calculated, it is possible to take advantage of the advanced failure criteria in the framework of the Mohr-Coulomb criterion. In this study, a method expressing the tangential Mohr-Coulomb strength parameters in terms of the stress invariant is proposed and it is applied to the generalized Hoek-Brown criterion and the HB-WW criterion. In addition, a new approach describing the geometric meaning of the ${\sigma}_2$-dependency of failure criteria in 3-D principal stress space is proposed. Implementation examples of the proposed method show that the influence of the intermediate principal stress on the tangential friction angle and cohesion of the HB-WW criterion is considerable, which is not the case for the 2-D failure criterion.

An Effective Similarity Search Technique supporting Time Warping in Sequence Databases (시퀀스 데이타베이스에서 타임 워핑을 지원하는 효과적인 유살 검색 기법)

  • Kim, Sang-Wook;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.643-654
    • /
    • 2001
  • This paper discusses an effective processing of similarity search that supports time warping in large sequence database. Time warping enables finding sequences with similar patterns even when they are of different length, Previous methods fail to employ multi-dimensional indexes without false dismissal since the time warping distance does not satisfy the triangular inequality. They have to scan all the database, thus suffer from serious performance degradation in large database. Another method that hires the suffix tree also shows poor performance due to the large tree size. In this paper we propose a new novel method for similarity search that supports time warping Our primary goal is to innovate on search performance in large database without false dismissal. to attain this goal ,we devise a new distance function $D_{tw-Ib}$ consistently underestimates the time warping distance and also satisfies the triangular inequality, $D_{tw-Ib}$ uses a 4-tuple feature vector extracted from each sequence and is invariant to time warping, For efficient processing, we employ a distance function, We prove that our method does not incur false dismissal. To verify the superiority of our method, we perform extensive experiments . The results reveal that our method achieves significant speedup up to 43 times with real-world S&P 500 stock data and up to 720 times with very large synthetic data.

  • PDF

Reconsideration of the Linguistic Category of Mediation in Language: a Comparative Approach between French and Korean (언어의 '매개작용' 범주 고찰: 프랑스어와 한국어 비교 연구)

  • Suh, Jungyeon
    • Cross-Cultural Studies
    • /
    • v.46
    • /
    • pp.297-325
    • /
    • 2017
  • In this paper, I would like to reconsider the evidential category (or the mediation category) in languages with language specific values, especially in Korean and French evidentials. We tried to analyze how the evidentials are represented in both languages including their linguistic markers (grammatical, lexical or discursive) and their semantic meanings. According to the precedent studies from the general linguistic point of view, we would like to reconsider the semantic meanings of both languages' grammatical markers, the so-called Korean retrospective marker '-te-' and French conditionals in the framework of the enunciative operation theory suggested by $Descl{\acute{e}}s$ & $Guentch{\acute{e}}va$ (2000), which proposed to classify the type of discourse by the language-independent description tools conceived after the enunciation theory suggested by Bally (1965), Benveniste (1956), Culioli (1973). Through this approach, we would like to contribute to establishing the linguistic basis not only for the general linguistic research to determine the invariant meaning of linguistic evidentials and their system, but also for the applied linguistics to the language engineering field.

Accuracy Analysis for Slope Movement Characterization by comparing the Data from Real-time Measurement Device and 3D Model Value with Drone based Photogrammetry (도로비탈면 상시계측 실측치와 드론 사진측량에 의한 3D 모델값의 정확도 비교분석)

  • CHO, Han-Kwang;CHANG, Ki-Tae;HONG, Seong-Jin;HONG, Goo-Pyo;KIM, Sang-Hwan;KWON, Se-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.234-252
    • /
    • 2020
  • This paper is to verify the effectiveness of 'Hybrid Disaster Management Strategy' that integrates 'RTM(Real-time Monitoring) based On-line' and 'UAV based Off-line' system. For landslide prone area where sensors were installed, the conventional way of risk management so far has entirely relied on RTM data collected from the field through the instrumentation devices. But it's not enough due to the limitation of'Pin-point sensor'which tend to provide with only the localized information where sensors have stayed fixed. It lacks, therefore, the whole picture to be grasped. In this paper, utilizing 'Digital Photogrammetry Software Pix4D', the possibility of inference for the deformation of ungauged area has been reviewed. For this purpose, actual measurement data from RTM were compared with the estimated value from 3D point cloud outcome by UAV, and the consequent results has shown very accurate in terms of RMSE.

Radiometric Cross Calibration of KOMPSAT-3 and Lnadsat-8 for Time-Series Harmonization (KOMPSAT-3와 Landsat-8의 시계열 융합활용을 위한 교차검보정)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1523-1535
    • /
    • 2020
  • In order to produce crop information using remote sensing, we use classification and growth monitoring based on crop phenology. Therefore, time-series satellite images with a short period are required. However, there are limitations to acquiring time-series satellite data, so it is necessary to use fusion with other earth observation satellites. Before fusion of various satellite image data, it is necessary to overcome the inherent difference in radiometric characteristics of satellites. This study performed Korea Multi-Purpose Satellite-3 (KOMPSAT-3) cross calibration with Landsat-8 as the first step for fusion. Top of Atmosphere (TOA) Reflectance was compared by applying Spectral Band Adjustment Factor (SBAF) to each satellite using hyperspectral sensor band aggregation. As a result of cross calibration, KOMPSAT-3 and Landsat-8 satellites showed a difference in reflectance of less than 4% in Blue, Green, and Red bands, and 6% in NIR bands. KOMPSAT-3, without on-board calibrator, idicate lower radiometric stability compared to ladnsat-8. In the future, efforts are needed to produce normalized reflectance data through BRDF (Bidirectional reflectance distribution function) correction and SBAF application for spectral characteristics of agricultural land.

Underwater object radial velocity estimation method using two different band hyperbolic frequency modulation pulses with opposite sweep directions and its performance analysis (두 대역 상반된 스윕방향 hyperbolic frequency modulation 펄스로 수중물체 시선속도추정 기법 및 성능분석)

  • Chomgun Cho;Euicheol Jeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.25-31
    • /
    • 2023
  • In order to estimate the radial speed of an underwater object so-called target with active sonar, Continuous Wave (CW) pulse is generally used, but if a target is slow and at near distance, it is not easy to estimate the radial velocity of the target due to acoustic reverberation in the ocean. In 2017, Wang et al. utilized broadband signal of two Hyperbolic Frequency Modulation (HFM) pulses, which is known as a doppler-invariant pulse, with equal frequency band and in opposite sweep directions to overcome this problem and successfully estimate the radial speed of slow-moving nearby target. They demonstrated the estimation of the radial velocity with computer simulation using the parameters of two HFM starting time differences and receiving times. However, for it uses two HFM pulses with equal frequency, cross-correlation between the two pulses negatively affect the detection performance. To mitigate this cross-correlation effect, we suggest using two different band HFM with the opposite sweep directions. In this paper, a method of radial velocity estimation is derived and simulated using two HFM pulses with the pulse length of 1 second and bandwidth of 400 Hz. Applying the suggested method, the radial velocity was estimated with approximately 6 % of relative error in the simulation.

Theoretical Study of Scientific Symmetry and Its Implications for Science Education (과학적 대칭성에 대한 이론적 고찰 및 과학교육에의 함의)

  • Kyungsuk Bae;Yeon-A Son;Jun-Young Oh
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.1
    • /
    • pp.13-29
    • /
    • 2023
  • This study aims to provide a theoretical examination of symmetry and its implications for science education. For this purpose, first, we examined the way of thinking of Western science in general through ancient Greek scholars. Second, we divided the perception of symmetry into ancient and modern times. Third, we draw out the implications for science education. The results of this study show that, first, the way of thinking in Western science is 'abstraction', which began with Parmenides and was established by Plato. Second, the ancient perception of symmetry is symmetry as beautiful proportions and harmony based on abstraction, and the modern perception of symmetry is symmetry as an invariant perspective based on abstraction that seeks to find constancy in change. We examined Eratosthenes' experiment to measure the circumference of the earth as an example of ancient symmetry, and Galilean relativity or transformation as examples of modern symmetry. Third, the implications for science education are as follows. Awareness of symmetry can help educate students about the nature of science, as it is a central theme that runs through ancient and modern science. Second, the Eratosthenes' experiment and Galilean relativity or transformations are not represented in the 2022 revised curriculum, but could support understanding of science and key competencies and concepts. Finally, an integrated approach to science education centered on symmetry can have a positive impact on scientific attitudes and interest.

Estimation of 3-D Hydraulic Conductivity Tensor for a Cretaceous Granitic Rock Mass: A Case Study of the Gyeongsang Basin, Korea (경상분지 백악기 화강암 암반에 대한 삼차원 수리전도텐서 추정사례)

  • Um, Jeong-Gi;Lee, Dahye
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.41-57
    • /
    • 2022
  • A workflow is presented to estimate the size of a representative elementary volume and 3-D hydraulic conductivity tensor based on fluid flow analysis for a discrete fracture network (DFN). A case study is considered for a Cretaceous granitic rock mass at Gijang in Busan, Korea. The intensity and size of joints were calibrated using the first invariant of the fracture tensor for the 2-D DFN of the study area. Effective hydraulic apertures were obtained by analyzing the results of field packer tests. The representative elementary volume of the 2-D DFN was determined to be 20 m square by investigating the variations in the directional hydraulic conductivity for blocks of different sizes. The directional hydraulic conductivities calculated from the 2-D DFN exhibited strong anisotropy related to the hydraulic behavior of the study area. The 3-D hydraulic conductivity tensor for the fractured rock mass of the study area was estimated from the directional block conductivities of the 2-D DFN blocks generated for various directions in 3-D. The orientations of the principal components of the 3-D hydraulic conductivity tensor were found to be identical to those of delineated joint sets in the study area.

Assessment of Topographic Normalization in Jeju Island with Landsat 7 ETM+ and ASTER GDEM Data (Landsat 7 ETM+ 영상과 ASTER GDEM 자료를 이용한 제주도 지역의 지형보정 효과 분석)

  • Hyun, Chang-Uk;Park, Hyeong-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.393-407
    • /
    • 2012
  • This study focuses on the correction of topographic effects caused by a combination of solar elevation and azimuth, and topographic relief in single optical remote sensing imagery, and by a combination of changes in position of the sun and topographic relief in comparative analysis of multi-temporal imageries. For the Jeju Island, Republic of Korea, where Mt. Halla and various cinder cones are located, a Landsat 7 ETM+ imagery and ASTER GDEM data were used to normalize the topographic effects on the imagery, using two topographic normalization methods: cosine correction assuming a Lambertian condition and assuming a non-Lambertian c-correction, with kernel sizes of $3{\times}3$, $5{\times}5$, $7{\times}7$, and $9{\times}9$ pixels. The effects of each correction method and kernel size were then evaluated. The c-correction with a kernel size of $7{\times}7$ produced the best result in the case of a land area with various land-cover types. For a land-cover type of forest extracted from an unsupervised classification result using the ISODATA method, the c-correction with a kernel size of $9{\times}9$ produced the best result, and this topographic normalization for a single land cover type yielded better compensation for topographic effects than in the case of an area with various land-cover types. In applying the relative radiometric normalization to topographically normalized three multi-temporal imageries, more invariant spectral reflectance was obtained for infrared bands and the spectral reflectance patterns were preserved in visible bands, compared with un-normalized imageries. The results show that c-correction considering the remaining reflectance energy from adjacent topography or imperfect atmospheric correction yielded superior normalization results than cosine correction. The normalization results were also improved by increasing the kernel size to compensate for vertical and horizontal errors, and for displacement between satellite imagery and ASTER GDEM.

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula : (5) Deogbong Napseok Deposit (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구:(5) 덕봉납석광상)

  • Kim, Soo-Jin;Choo, Chang-Oh;Kim, Won-Sa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.25-39
    • /
    • 1994
  • The Deogbong napseok clay deposit which is composed mainly of dickite and pyrophyllite has been formed by hydrothermal alteration of the Late Cretaceous volcanic rocks consisting of andesitic tuff and andesite. The mineralogy of the napseok ores and the hydrothermal alteration processes have been studied in order to know the nature of the interaction between minerals and fluids for the formation of the deposit. Chemical distribution shows that alkali elements and silica were mobile but alumina was relatively immobile during the hydrothermal processes. It is evident that enrichment of alumina and leaching of silica from the host rock led to the formation of the napseok ore, whereas the enrichment of silica in the outer zone of the deposit gave rise to the silica zone. A large amount of microcrystalline quartz closely associated with dickite and pyrophyllite suggests the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica solubility moved out precipitating in the margin of the deposit to form the silica zone. Variation in dickite crystallinity implies the local change in the stability of the system. Thermodynamic calculation shows that the invariant point of pyrophyllite-dickite (kaolinite)-diaspore-quartz assemblages at 500 bars in the system $Al_{2}O_{3}-SiO_{2}-H_{2}O$ is about 300 $^{\circ}C$. Based on the mineral assemblages and the experimental data reported, it is estimated that the main episode of hydrothermal alteration occurred at least above 270 to 300 $^{\circ}C$ and $X_{CO_2}$ <0.025. Mineral occurrence and chemical variation indicate that the activity of Al is high in the upper part of the deposit, whereas the activity of Si is high in the lower part and the margin of the deposit. The nonequilibrium phase relations observed in the Deogbong deposit might be due to local change in intensive thermodynamic variables and fluid transport properties that resulted in the formation of nonequilibrium phases b of several stages.

  • PDF