• Title/Summary/Keyword: inundation modeling

Search Result 86, Processing Time 0.026 seconds

The Inundation Simulation for Inland by River Hydraulic Structures (하천 수리구조물에 의한 제내지 침수모의)

  • Choo, Tai-Ho;Yoon, Hyeon-Cheol;Noh, Hyun-Suk;Yun, Gwan-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2460-2468
    • /
    • 2014
  • A local rain that is concentrated in specific area in a short time frequently occurs due to recent abnormal weather. To prevent potential flood disasters, therefore, it is necessary to be established to the flood control system. Checking the river design standard, however, hydrologic design frequency of water gate is only marked as over 20 years, so this fact shows that the standard is unclear. The inland inundation modeling considering the stage in a river and quantitative assessment are required to reduce flood damage. The simulation for internal inundation is very complex and is time-consuming due to considering hydraulic hydrology characteristics at the same time. Using the already established river master plan, consequently, this study proposed the simple and convenient method for assessment of the internal inundation simulation. Using the proposed method in the upper and middle regions of a river, influences for design frequency or water gate location were assessed by applying the nine probability precipitation with design frequency and by targeting the water gates which are installed in five inlands.

Three-Dimensional Laboratory Experiments for Tsunami Inundation in a Coastal City (지진해일 범람이 해안도시에 미치는 영향에 대한 3차원 수리모형실험)

  • Kim, Kyuhan;Park, Hyoungsu;Shin, Sungwon;Cox, Daniel T.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.6
    • /
    • pp.400-403
    • /
    • 2012
  • Laboratory experiments were conducted for tsunami inundation to an urban area with large building roughness. The waterfront portion of the city of Seaside which is located on the US Pacific Northwest coast, was replicated in 1/50 scale in the wave basin. Tsunami heights and velocities on the inundated land were measured at approximately 31 locations for one incident tsunami heights with an inundation height of approximately 10 m (prototype) near the shoreline. The inundation pattern and speed were more severe and faster in some areas due to the arrangement of the large buildings. Momentum fluxes along the roads were estimated using measure tsunami inundation heights and horizontal fluid velocities. As expected, the maximum momentum flux was near the shoreline and decreased landward. Inundation heights and momentum flux were slowly decreased through the road with buildings on each side. The results from this study showed that the horizontal inundation velocity is an important factor for the external force of coastal structures.

The Simulation of Flood Inundation of Namdae Stream with GIS-based FLUMEN model (GIS 기반 FLUMEN 모형을 이용한 남대천 홍수범람 모의실험)

  • Lee, Geun-Sang;Choi, Yun-Woong
    • Spatial Information Research
    • /
    • v.18 no.2
    • /
    • pp.25-34
    • /
    • 2010
  • This study simulated flood inundation each frequency rainfall using GIS spatial information and FLUMEN model for part of Muju-Namdae Stream. To create geomorphology for the analysis of flood inundation, Triangle Irregular Network(TIN) was constructed using GIS spatial interpolation method based on digital topographic map and river profile data, unique data source to represent real topography of the river areas. And also flood inundation was operated according to the levee collapse to consider extremely flood damage scenarios. As the analysis of result, the inundation area in the left levee collapse showed more high as 3.13, 3.69, and 4.17 times comparing with one of right levee for 50, 100, and 200 year frequency rainfall and showed 1.00, 2.15, and 3.34 times comparing with one of right levee in the inundation depth with over 1.0 meter, which can cause casualties. As the analysis of inundation area of the inundation depth with over 1.0 meter, which can cause casualties in left levee collapse, it increased more high as 263% and 473% when 50 year frequency change into 100 and 200 year frequency. Also As the analysis of inundation area of the inundation depth with over 1.0 meter in right levee collapse, it increased high as 123% and 142% when 50 year frequency change into 100 and 200 year frequency. Especially, the inundation area of the inundation depth with 3.0~3.5m showed more high as 263% and 489% when 50 year frequency change into 100 and 200 year frequency. It is expected that flood inundation map of this paper could be important decision making data to establish land use planning and water treatment measures.

Assessment of the Inundation Area and Volume of Tonle Sap Lake using Remote Sensing and GIS (원격탐사와 GIS를 이용한 Tonle Sap호의 홍수량 평가)

  • Chae, Hyosok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.96-106
    • /
    • 2005
  • The ability of remote sensing and GIS technique, which used to provide valuable informations in the time and space domain, has been known to be very useful in providing permanent records by mapping and monitoring flooded area. In 2000, floods were at the worst stage of devastation in Tonle Sap Lake, Mekong River Basin, for the second time in records during July and October. In this study, Landsat ETM+ and RADARSAT imagery were used to obtain the basic information on computation of the inundation area and volume using ISODATA classifier and segmentation technique. However, the extracted inundatton area showed only a small fraction than the actually inundated area because of clouds in the imagery and complex ground conditions. To overcome these limitations, the cost-distance method of GIS was used to estimate the inundated area at the peak level by integrating the inundated area from satellite imagery in corporation with digital elevation model (DEM). The estimated inundation area was simply converted with the inundation volume using GIS. The inundation volume was compared with the volume based on hydraulic modeling with MIKE 11. which is the most poppular among the dynamic river modeling system. The method is suitable for estimating inundation volume even when Landsat ETM+ has many clouds in the imagery.

  • PDF

Improving streamflow and flood predictions through computational simulations, machine learning and uncertainty quantification

  • Venkatesh Merwade;Siddharth Saksena;Pin-ChingLi;TaoHuang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.29-29
    • /
    • 2023
  • To mitigate the damaging impacts of floods, accurate prediction of runoff, streamflow and flood inundation is needed. Conventional approach of simulating hydrology and hydraulics using loosely coupled models cannot capture the complex dynamics of surface and sub-surface processes. Additionally, the scarcity of data in ungauged basins and quality of data in gauged basins add uncertainty to model predictions, which need to be quantified. In this presentation, first the role of integrated modeling on creating accurate flood simulations and inundation maps will be presented with specific focus on urban environments. Next, the use of machine learning in producing streamflow predictions will be presented with specific focus on incorporating covariate shift and the application of theory guided machine learning. Finally, a framework to quantify the uncertainty in flood models using Hierarchical Bayesian Modeling Averaging will be presented. Overall, this presentation will highlight that creating accurate information on flood magnitude and extent requires innovation and advancement in different aspects related to hydrologic predictions.

  • PDF

Extreme Tsunami Inundation at Babi Island due to Flores Earthquake Induced Tsunami in 1992

  • Kim, Kyeong Ok;Kim, Dong Chule;Yuk, Jin-Hee;Pelinovsky, Efim;Choi, Byung Ho
    • Ocean and Polar Research
    • /
    • v.37 no.2
    • /
    • pp.91-105
    • /
    • 2015
  • In this paper we investigated the phenomenon of extreme run-up at Babi Island in Indonesia caused by the 1992 Flores earthquake (Mw = 7.8) using a series of three-dimensional numerical modeling experiments. Simulations were carried out to investigate how much the presence/absence of the coast of Flores affects the generation of the extreme inundation at Babi Island through the reflection process of tsunami waves.

Estimating the rating curve of irrigation canals in the Cheongju Sindae area

  • Mikyoung Choi;Inhyeok Song;Heesung Lim;Hansol Kang;Hyunuk An
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.1
    • /
    • pp.79-86
    • /
    • 2024
  • As the frequency and intensity of heavy rains increase, the vulnerability of agriculture to disasters also increases. Consequently, there is a need to improve flood and inundation predictions. To enhance the accuracy of inundation predictions, it is essential to monitor water level and discharge data within agricultural areas. This study was conducted to monitor water levels and rainfall in the Cheongju Sindae area from 2022 to 2023, and the data was utilized as input and validation data for agricultural inundation modeling. Four irrigation drainage canals were installed to a square-shaped concrete structure where the water level gauge is. It was then confirmed that the water level rises with rainfall. The flow velocities were monitored during periods of heavy rainfall. The rating curve, which estimates water level and flow velocity based on observations, was estimated using the software K-HQ. The resulting curve was presented with the Coefficient of Determination (R2). K-HQ was also used to calculate the equation for the rating curve, taking outliers into account at each data point. Outliers were extracted and the rating curve was recalculated. As the coefficient of determination of three out of four stations exceeded 0.95, the estimated rating curve may be considered reliable for discharge estimation. This study provides critical data for enhancing agricultural inundation modeling accuracy and drainage improvement projects.

Analysis of Urban Inundation Considering Building Footprints Based on Dual-Drainage Scheme (건물의 영향을 고려한 이중배수체계기반 침수해석)

  • Lee, Jeong-Young;Jin, Gi-Ho;Ha, Sung-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.40-51
    • /
    • 2014
  • This study aims to investigate urban inundation considering building footprints based on dual-drainage scheme. For this purpose, LiDAR data is cultivated to generate two original data set in terms of DEM with $1{\times}1$ meter and building layer of the study drainage area in Seoul and then the building layer is overlapped as vector polygon with the mesh data with the same size as DEM. Then, terrain data for modeling were re-sampled to reduce resolution as $10{\times}10$ meters. As results, the simulated depth without considering building footprints has a tendency to underestimate the inundation depth compared to observed data analized by CCTV imagery. Otherwise, the simulation result considering building footprints revealed definitely higher fitness. The difference of inundation depth came from the variation of inundation volume which was relevant to inundation extent. If the building footprints are enlarged, the possible inundation depth is increased, which results in being inundation depth higher because hydrological conditions such as rainfall depth are conservational. Otherwise, according to comparison of inundation extents, there were no significant difference but the case of considering building footprint was revealed slightly higher fitness. Thus, it is concluded that the considering building footprint for inundation analysis of urban watershed should be required to improve simulation accuracy synthetically.

Retrospective analysis of the urban inundation and the impact assessment of the flood barrier using H12 model (H12 모형을 이용한 도시침수원인 및 침수방어벽의 효과 분석)

  • Kim, Bomi;Noh, Seong Jin;Lee, Seungsoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.5
    • /
    • pp.345-356
    • /
    • 2022
  • A severe flooding occured at a small urban catchment in Daejeon-si South Korea on July 30, 2020 causing significant loss of property (inundated 78 vehicles and two apartments) and life (one casualty and 56 victims). In this study, a retrospective analysis of the inundation event was implemented using a physically-based urban flood model, H12 with high-resolution data. H12 is an integrated 1-dimensional sewer network and 2-dimensional surface flow model supported by hybrid parallel techniques to efficiently deal with high-resolution data. In addition, we evaluated the impact of the flooding barriers which were installed after the flood disaster. As a result, it was found that the inundation was affected by a combination of multiple components including the shape of the basin, the low terrain of the inundation area located in the downstream part of the basin, and lack of pipe capacity to drain discharge from the upstream during heavy rain. The impact of the flooding barriers was analyzed by modeling with and without barriers on the high-resolution terrain input data. It was evaluated that the flood barriers effectively lower the water depth in the apartment complex. This study demonstrates capability of high-resolution physically-based urban modeling to quantitatively assess the past inundation event and the impact of the reduction measures.