• Title/Summary/Keyword: intrusive igneous rock

Search Result 16, Processing Time 0.022 seconds

Mesozoic Igneous Rocks in the Bupyeong District (부평지역(富平地域)의 중생대(中生代) 화성암류(火成岩類))

  • Suh, Kyu-Sik;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.19 no.3
    • /
    • pp.179-192
    • /
    • 1986
  • In the Bupyeong district, Mesozoic pyroclastic rocks, intrusive breccia, granites and felsic porphyries comprise a volcano-plutonic complex, overlying and intruding the Precambrian Gyeonggi gneiss complex. pyroclastic rocks, consisted mainly of rhyolitic welded tuffs, form a topographic circular structure about 10 kilometers in diameter. Granites and felsic porphyries which intruded the pyroclastic rocks are distributed in the inner side and also along the outer margin of the circular structure. K-Ar ages of two granite bodies(biotite), 162 and $148{\pm}7$ Ma, and that of the intrusive rhyolite (whole rock), $121{\pm}6$ Ma indicate that a series of volcano-plutonic igneous activity occurred between Jurassic and early Cretaceous age. Petrochemical characteristics suggest that the pyroclastic rocks, granites and felsic porphyries were originated from the comagmatic source. From the evidences of field occurrence, petrochemical and geochronological characteristics of igneous rocks and the geologic structures, it is believed that the igneous rocks in the Bupyeong district were formed during a Jurassic to early Cretaceous resurgent caldera evolution.

  • PDF

Influence of complex geological structure on horizontal well productivity of coalbed methane

  • Qin, Bing;Shi, Zhan-Shan;Sun, Wei-Ji;Liang, Bing;Hao, Jian-Feng
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.145-154
    • /
    • 2022
  • Complex geological conditions have a great influence on the mining of coalbed methane (CBM), which affects the extraction efficiency of CBM. This investigation analyzed the complicated geological conditions in the Liujia CBM block of Fuxin. A geological model of heterogeneities CBM reservoirs was established to study the influence of strike direction of igneous rocks and fault structures on horizontal well layout. Subsequently, the dual-porosity and dual-permeability mathematical model was established, which considers the dynamic changes of porosity and permeability caused by gas adsorption, desorption, pressure change. The results show that the production curve is in good agreement with the actual by considering gas seepage in matrix pores in the model. Complicated geological structures affect the pressure expansion of horizontal wells, especially, the closer to the fault structure, the more significant the effect, the slower the pressure drop, and the smaller the desorption area. When the wellbore extends to the fault, the pressure expansion is blocked by the fault and the productivity is reduced. In the study area, the optimal distance to the fault is 70 m. When the horizontal wellbore is perpendicular to the direction of coal seam igneous rock, the productivity is higher than that of parallel igneous rock, and the horizontal well bore should be perpendicular to the cleat direction. However, the well length is limited due to the dense distribution of igneous rocks in the Liujia CBM block. Therefore, the horizontal well pumping in the study area should be arranged along the direction of igneous rock and parallel plane cleats. It is found that the larger the area surrounded by igneous rock, the more favorable the productivity. In summary, the reasonable layout of horizontal wells should make full use of the advantages of igneous rock, faults and other complex geological conditions to achieve the goal of high and stable production.

Petrology of the Igneous Rocks in the Goseong area, Gyeongsang Basin II. Trace Element Geochemistry and Rb-Sr Radiometric Age (경상분지 고성지역의 화성암류에 대한 암석학적 연구 II. 미량원소 지구화학과 Rb-Sr 방사성 연대)

  • Jwa, Yong-Joo
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.473-483
    • /
    • 1998
  • The igneous rocks in the Goseong area are composed of the volcanic rocks (andesitic lapilli tuff and rhyodacite), Bulgugsa granites (Hornblende-biotite granite and two pyroxene granite) and intrusive andesites. In the variation diagrams of the trace and rare earth element contents and elemental ratios as well as the REE patterns, the three igneous rock types show different variational trends and patterns. The geochemical features represent that the igneous rocks in the area were formed from three different magmatic pulses. Two independently carried out Rb-Sr isotope experiments for the Goseong granites show that the whole rock ages and Sr initial ratios of the granites are $66.4{\pm}6.2Ma$, $0.70517{\pm}22(2{\sigma})$ and $71.3{\pm}6.8Ma$, $0.70506{\pm}18(2{\sigma})$, respectively. These results suggest that the granites magma originated from the lower crustal materials of igneous origin intruded into the area during the late Cretaceous period. Masan hornblende-biotite granite emplaced at the vicinity of the Goseong area is very similar to the Goseong granite in its mineral compositions, major, trace and rare earth element contents and patterns. The intruding age (100 Ma) of the Masan granite is order than that of the Geseong granite, however. The similarity of the geochemical natures but the contrast of the intruding ages between the Masan and Goseong granites possibly indicate that the magma generation from the same source materials occurred at a temporal interval of ca. 30 Ma.

  • PDF

Loci of Orebodies, the Bupyeong Silver Deposits (부평은광상(富平銀鑛床)의 광체배태장소(鑛體胚胎場所))

  • Suh, Kyu-Sik;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.20 no.2
    • /
    • pp.97-106
    • /
    • 1987
  • The geology of the Bupyeong mine area is consisted of Precambrian Gyeonggi gneiss complex and Mesozoic igneous rocks; i.e., pyroclastic rocks, intrusive breccia, granite and felsic porphyries which were formed during a Jurassic to early Cretaceous resurgent caldera evolution. Granites are not observed on the surface and in the underground of the mine. Bupyeong silver deposits occur as stockworks of base metal sulfides- minor silver minerals-quartz - carbonate veinlets, hosted by pyroclastic rocks and intrusive breccia at the southwestern margin of the caldera. Silver occurs mainly as native silver, and other silver minerals, minor in quantity, are argentite, tetrahedrite-freibergite, pyrargyrite, polybasite, canfieldite and dyscrasite. The average grade of silver ore is about 180g/t Ag. Discrimination of silver ore from the country rocks depends largely on the chemical analyses of rock samples taken every two meters from tunnels, diamond-drilling cores and mining stopes, because silver minerals are hardly observed in the ore by crude eye, and silver orebodies do not properly coincide with the concentrated zone of base metal sulfides which were precipitated at the earlier stage than the stage of precipitation of native silver. General characteristics of the loci of the silver orebodies are as follows; (1) The host rocks of orebodies are pyroclastic rocks and intrusive breccia. (2) Many of the orebodies are distributed around Gyeonggi gneiss complex. Especially where the paleotopography of gneiss complex shows a gradual slope, the basal stratigraphic horizon of the pyroclastic rocks unconformably overlying the gneiss complex offered a favorable loci of high grade ore. (3) $N5^{\circ}W$ to $N15^{\circ}$ E-striking faults played an important role in the localization of the orebodies. (4) Conduits of intrusive breccia within the gneiss complex, through which the intrusive breccia intruded into the upper pyroclastic rocks, exist beneath most of the main orebodies. This suggests that the conduits of intrusive breccia served as channelways for the migration of ore fluids.

  • PDF

Petrochemistry on igneous rocks in the Mt. Mudeung area (무등산 지역에 분포하는 화성암류의 암석화학)

  • 김용준;박재봉;박병규
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.214-233
    • /
    • 2002
  • Igneous rocks of Mt. Mudeung area are composed of Pre-Cambrian granite gneiss, Triassic hornblende-biotite granodiorite, Jurassic quartz diorite and Cretaceous igneous rocks. The Cretaceous igneous rocks consist of volcanic rocks (Hwasun andesite, Mudeung-san dacite and Dogok rhyolite) and granitic rocks (micrograpic granite and quartz porphyry). Major elements of the Cretaceous igneous rocks represent calc-alkaline rock series and correspond to a series of differentiated products from cogenetic magma. Igneous activity of Mt. Mudeung area started from volcanic activity, and continued to intrusive activity at end of the Cretaceous. In chondrite normalized REE pattern, most of igneous rocks of Mt. Mudeung area show similar pattern of Eu (-) anomaly. This is a characteristic feature of granite in continental margin by tectonic movement. Variation diagrams of total REE vs. La/Yb V vs. SiO$_2$ indicate differentiation and magnetite fractionation sequential trend of Hwasun andesite longrightarrowMudeungsan dacitelongrightarrowquartz porphyry. In mineral composition of these igneous rocks in mt. Mudeung area, composition of plagioclase and biotite coincidence with variation of whole rock composition, and emplacement and consolidation of magma is about 15 km (about 4.9 Kbar) in Jurassic quartz diorite and 2.0~3.2 km (0.6~1.0 Kbar) in Triassic hornblende-biotite granodiorite used by amphibolite geobarometer. Parental magma type of these granitic rocks of nt. Mudeung area corresponds to VAG field in Pearce diagram, and I-type in ACF diagram.

Intrusive Phases and Igneous Pricesses in the Yeongju Batholith (영주저반의 관입상과 화성과정)

  • 황상구
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.669-688
    • /
    • 1999
  • The Yeongju granitoid batholith is a plutonic complex of huge area (1180km2) intruding the metamorphic rocks of the Yeongnam massif. The batholith, which is divided into fivelithofacies, consists of three separate plutons. The oldest Buseok pluton comprises four lithofacies: hornblende biotite tonalite, porphyrotoc biotite granodiorite, equigranular biotite grandiorite and biotite granite. The middle Chunyang pluton has been called as Chunyang granite that ranges in compostion from granodiorite to granite. The youngest Jangsu pluton is intrusions that has lithofacies of two mica granite. The contact between Buseok pluton and the rest two plutons shows obvious intrusive relations, but relation between the Chunyang and the Jangsu pluton is far away, so gives no indication of relative ages. Changes in nextures and micristructures, as well as in the mineral contents, take place between rock types og the plutons. only the Buseok pluton shows faliations of two type: magmatic foliation and regional mylonal foliation. K-Ar age deteminations fall into 171.7$\pm$3.2~162.3$\pm$3.1 Ma in the Buseok pluton, 153.9$\pm$2.9 Ma in the Chunyang pluton and 145.3$\pm$2.7 Ma in the jangsu Pluton. The batholith presents three separate intrusive phases which range in composition from tonalite to granite to granite. Each intrusive phase apperars to have been intruded in a pulse from an underlying, differentiating magma. The petrochemical data showthat three plutons are within the diagnostic range for continental arc orogenic tectonic setting, whereas Jangsu pluton approaches postorogenic setting. The data suggest that three plutons are calc-aclkalline series, and that temporal compositional variations change progerssively from tonalite through grandiorite to granite between the intrusive phases. so we consider that the magmas for all the phases were probably derived from a differentiation by fractional crystallization of a parental magma. The tonalite magma of the Buseok phase was tapped was tapped from a chamber deep in the crust, and then would have to rise at a rapid rate to its final level of emplacement. The tonalite magma in the chamber was gradually enolved through granodiorite magma into granite magma by fractional crystallization. The magmas of the younger phases were respectively tapped with temporal interval from a evolved magma of the chamber that rose into a shallower lever in the crust, and rose to their present level of emplacement.

  • PDF

Petrology of the Igneous Rocks in the Goseong Area, Gyeongsang Basin I. Major Element Geochemistry and K-Ar Radiometric Age (경상분지 고성지역의 화성암류에 대한 암석학적 연구 I. 주성분원소 지구화학과 K-Ar 방사성 연대)

  • Jwa, Yong-Joo;Park, Jeong-mi
    • Economic and Environmental Geology
    • /
    • v.29 no.5
    • /
    • pp.561-573
    • /
    • 1996
  • The igneous rocks in the Goseong area, the southwestern part of the Gyeongsang basin, are composed of the volcanic rocks, Bulgugsa granites and intrusive andesites. The volcanic rocks are andesitic lapilli tuff, dacite and rhyolite. The granites are mainly of hornblende-biotite granite and intruded into the sedimentary basement and the volcanic rocks. The intrusion of andesitic dyke is thought to be the latest igneous activity in the area. In the variation diagrams of the major oxides, the three igneous rock types show different variational trends, indicating that they were from the different magmatic pulses. K-Ar radiometric ages suggest that the igneous activity in the Goseong area had occurred during late Cretaceous period. The ages of the volcanic rocks seem likely to have become younger due to the thermal effect by the granitic intrusion. The major element compositoinal variation of the granites from the Goseong area are compared with those from the Jindong, Geoje and Masan areas. By the comparison, it is easily understood that the Jindong granites are fairly different from the other three granites. On the other hand, the Goseong, Geoje and Masan granites generally show similar variational trends with each other, suggesting that they are of similar genetic origin. Combining the similarity of the geochemical features and the difference of the intruding ages between the Goseong and Masan granites, it seems like that the magma generation from the same source materials had occurred at a temporal interval.

  • PDF

Origin of Massive Amphibolitic Rocks in Imgye Area, Korea (임계지역(臨溪地域)에 분포(分布)하는 각섬석질암(角閃石質岩)의 성인(成因))

  • So, Chil-Sup;Kim, Youn-Ki;Chi, Se-Jung;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.14 no.4
    • /
    • pp.183-191
    • /
    • 1981
  • Major and trace elements analyses are presented for 13 amphibolites by wet chemical and emission spectroscopic methods. These chemical data were compared with limestone and quartzite closely associated with the amphibolites. The chemical similarity of the amphibolites studied to the basic igneous rock and low oxidation ratios (<30) are indicative of the igneous intrusive, especially middle stage differentiates. Petrographic and stratigraphic study of the rocks suggest the more igneous features rather than those of sedimentary progenitors.

  • PDF

Occurrence and Geochemical Characteristics of the Haenam Pb-Zn Skarn Deposit (해남 연-아연 스카른광상의 산상과 지화학적 특성)

  • Im, Heonkyung;Shin, Dongbok;Heo, Seonhee
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.363-379
    • /
    • 2014
  • The Haenam Pb-Zn skarn deposit is located at the Hwawon peninsula in the southwestern part of the Ogcheon Metamorphic Belt. The deposit is developed along the contact between limestone of the Ogcheon group and Cretaceous quartz porphyry. Petrography of ore samples, chemical composition of skarn and ore minerals, and geochemistry of the related igneous rocks were investigated to understand the characteristics of the skarn mineralization. Skarn zonation consists of garnet${\pm}$pyroxene${\pm}$calcite${\pm}$quartz zone, pyroxene+garnet+quartz${\pm}$calcite zone, calcite+pyroxene${\pm}$garnet zone, quartz+calcite${\pm}$pyroxene zone, and calcite${\pm}$chlorite zone in succession toward carbonate rock. Garnet commonly shows zonal texture comprised of andradite and grossular. Pyroxene varies from Mn-hedenbergite to diopside as away from the intrusive rock. Chalcopyrite occurs as major ore mineral near the intrusive rock, and sphalerite and galena tend to increase as going away. Electron probe microanalyses revealed that FeS contents of sphalerite become decreased from 5.17 mole % for garnet${\pm}$pyroxene${\pm}$calcite${\pm}$quartz zone to 2.93 mole %, and to 0.40 mole % for calcite+pyroxene${\pm}$garnet zone, gradually. Ag and Bi contents also decreased from 0.72 wt.% and 1.62 wt.% to <0.01 wt.% and 0.11 wt.%, respectively. Thus, the Haenam deposit shows systematic variation of species and chemical compositions of ore minerals with skarn zoned texture. The related intrusive rock, quartz porphyry, expresses more differentiated characteristics than Zn-skarn deposit of Meinert(1995), and has relatively high$SiO_2$ concentration of 72.76~75.38 wt.% and shows geochemical features classified as calc-alkaline, peraluminous igneous rock and volcanic arc tectonic setting.

Investigation on Potential Value for Maritime Cultural Heritage, Historical and Petrographic Characteristics of the Seosan Black Submerged Rocks (Geomenyeo) in Korea (서산 검은여의 역사적 및 암석기재적 특징과 해양유산적 잠재가치 검토)

  • Park, Jun Hyoung;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.35 no.2
    • /
    • pp.131-144
    • /
    • 2019
  • The Seosan Geomenyeo(black submerged rocks), once located at the Cheonsuman bay of Buseokmyeon in Seosan, Korea, is a reef rock now exposed on the land surface. The Geomenyeo can also be found in the ancient geographic maps around the area. The local geographic names, like Buseok and Buseoksa temple are derived from the Geomenyeo. It is composed of ultramafic rocks complex and intrusive felsic igneous rocks. These rocks show diverse facies with various petrographic characteristics caused by geological processes such as intrusion and alteration. Ultramafic rocks complex can be roughly categorized as coarse grained ultramafic rocks and medium grained mafic rocks. Both cases are composed of pyroxene and amphibole, showing the general rock facies of pyroxenite, diabase and lamprophyre. Felsic igneous rocks includes pinkish medium grained granite, porphyritic amphibole granite and aplite with varied mineral compositions. The Geomenyeo is the only ultramafic rocks complex in the Cheonsuman Bay; moreover, it has a distinctive geological and scenic value, as well as a symbolic property. In order to preserve the Geomenyeo, it is necessary to investigate and promote it as a designated heritage site through academic studies, and compensate for the convenience and protection facilities. Additionally, the Geomenyeo should be evaluated as a maritime heritage site, due to the unique local culture as it succeeds the recognition of forefathers which regarded it as a local scenic site with significance.