• Title/Summary/Keyword: intrinsic permeability

Search Result 34, Processing Time 0.019 seconds

Fucoidan Induces Apoptosis in A2058 Cells through ROS-exposed Activation of MAPKs Signaling Pathway

  • Ryu, Yea Seong;Hyun, Jin Won;Chung, Ha Sook
    • Natural Product Sciences
    • /
    • v.26 no.3
    • /
    • pp.191-199
    • /
    • 2020
  • Fucoidan, a natural component of brown seaweed, has various biological activities such as anti-cancer activity, anti-oxidant, and anti-inflammatory against various cancer cells. However, the fucoidan has been implicated in melanoma cells via apoptosis signaling pathway. Therefore, we investigated apoptosis with fucoidan in A2058 human melanoma cells with dose- and time-dependent manners. In our results, A2058 cells viability decreased at relatively short-time and low-concentration through fucoidan. This effects of fucoidan on A2058 cells appeared to be mediated by the induction of apoptosis, as manifested by morphological changes through DNA-binding dye Hoechst 33342 staining. When a dose of 80 ㎍/mL fucoidan was treated, the cells were observed: crescent or ring-like structure, chromatin condensation, and nuclear fragmentation. With the increase at 100 ㎍/mL fucoidan, the cell membrane is intact throughout the total process, including membrane blebbing and loss of membrane integrity as well as increase of sub-G1 DNA. Furthermore, to understand the exact mechanism of fucoidan-treated in A2058 cells, western blotting was performed to detect apoptosis-related protein expression. In this study, Bcl-2 family proteins can be regulated by fucoidan, suggesting that fucoidan-induced apoptosis is modulated by intrinsic pathway. Therefore, expression of Bcl-2 and Bax may result in altered permeability, activating caspase-3 and caspase-9. And the cleaved form of poly ADP-ribose polymerase was detected in fucoidan-treated A2058 cells. These results suggest that A2058 cells are highly sensitive to growth inhibition by fucoidan via apoptosis, as evidenced by activation of extracellular signal-regulated kinases/p38/Bcl-2 family signaling, as well as alteration in caspase-9 and caspase-3.

Protective effects of an ethanol extract of Angelica keiskei against acetaminophen-induced hepatotoxicity in HepG2 and HepaRG cells

  • Choi, Yoon-Hee;Lee, Hyun Sook;Chung, Cha-Kwon;Kim, Eun Ji;Kang, Il-Jun
    • Nutrition Research and Practice
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • BACKGROUND/OBJECTIVE: Although Angelica keiskei (AK) has widely been utilized for the purpose of general health improvement among Asian, its functionality and mechanism of action. The aim of this study was to determine the protective effect of ethanol extract of AK (AK-Ex) on acute hepatotoxicity induced by acetaminophen (AAP) in HepG2 human hepatocellular liver carcinoma cells and HepaRG human hepatic progenitor cells. MATERIALS/METHODS: AK-Ex was prepared HepG2 and HepaRG cells were cultured with various concentrations and 30 mM AAP. The protective effects of AK-Ex against AAP-induced hepatotoxicity in HepG2 and HepaRG cells were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, lactate dehydrogenase (LDH) assay, flow cytometry, and Western blotting. RESULTS: AK-Ex, when administered prior to AAP, increased cell growth and decreased leakage of LDH in a dose-dependent manner in HepG2 and HepaRG cells against AAP-induced hepatotoxicity. AK-Ex increased the level of Bcl-2 and decreased the levels of Bax, Bok and Bik decreased the permeability of the mitochondrial membrane in HepG2 cells intoxicated with AAP. AK-Ex decreased the cleavage of poly (ADP-ribose) polymerase (PARP) and the activation of caspase-9, -7, and -3. CONCLUSIONS: These results demonstrate that AK-Ex downregulates apoptosis via intrinsic and extrinsic pathways against AAP-induced hepatotoxicity. We suggest that AK could be a useful preventive agent against AAP-induced apoptosis in hepatocytes.

Characterization of Ceramic Membranes by Gas-Liquid Displacement Porometer and Liquid-Liquid Displacement Porometer (Gas-Liquid Displacement Porometer와 Liquid-Liquid Displacement Porometer를 이용한 세라믹 분리막 특성 분석)

  • Kim, Yeo-Jin;Kim, Seong-Joong;Kim, Jeong;Jo, Yeong-Hoon;Park, Hosik;Lee, Pyung-Soo;Park, You-In;Park, Ho-Bum;Nam, Seung-Eun
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.263-272
    • /
    • 2017
  • There are several different methods to characterize membrane pore size distribution, however, it is yet difficult to accurately measure pore size range of 10-50 nm. In this work, we employed gas-liquid displacement porometer (GLDP) and liquid-liquid displacement porometer (LLDP) to characterize in-house alumina hollow fiber membrane (K-100) and commercial membranes (A-100, A-20) that exhibit pore sizes between 10-100 nm. GLDP method was more suitable for measuring the maximum pore size, and the measured mean pore size of the membranes by LLDP were better correlated with water permeability and solute rejection. It was determined that LLDP is effective for measuring pore sizes between 10-50 nm; however, the method holds intrinsic disadvantages such as low precision and high sensitivity compared to that of GLDP. Nevertheless, it is expected that the recently commercialized LLDP technique can provide useful data that other methods cannot.

The Effect of Operating Conditions on Cross-Flow Ultrafiltration with using Polyethylene Glycol (Polyethylene Glycol을 이용한 Cross-Flow Ultrafiltration에 있어서 운전조건의 영향)

  • Yoo, Kun-Woo;Seo, Hyung-Joon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.950-955
    • /
    • 1998
  • The objective of this study was to investigate the effect of running time, operating pressure, feed concentration and circulation rate on the permeation flux and the rejection rate in cross-flow ultrafiltration of polyethylene glycol(PEG) solution of molecular weight($M_w$) 8000 and 20000. The membranes used for this study were MWCO(Molecular Weight Cut-off) of 6 K and 20 K. The experiments were performed at the operating pressures of 7, 14 and 28 psi, the circulation rates of 1000 mL/min and 2000 mL/min, and the feed concentration of 100 mg/L and 1000 mg/L. At a constant pressure, the permeation flux and the observed rejection($R_o$) appeared to be approximately constant within the range of running time, 0~480 min. The permeation flux increased with increasing the operating pressure, and it increased with decreasing the feed concentration and decreasing Mw of PEG at a given pressure. On the other hand, $R_o$ decreased slightly with increasing the operating pressure. However, $R_o$ increased with increasing the feed concentration and increasing of $M_w$ of PEG at a given pressure. The variation in circulation rates did not cause any significant influence on the permeation flux. Increasing of circulation rate caused the increase of $R_o$, and $\alpha$ was increased substantially with the decrease of $M_w$ of PEG. The dimensionless parameter. permeability ratio($\alpha$), which was used to investigate flux-pressure behavior, was increased with the increase in circulation rate and operating presure. The value of $\alpha$ was less than 1 in all cases. The estimated intrinsic rejection(R). which was obtained from mass transfer coefficient, was decreased with the increase of operating pressure. However R increased with the increase of linear velocity of feed and $M_w$ of PEG.

  • PDF