• 제목/요약/키워드: intrinsic apoptosis

검색결과 155건 처리시간 0.023초

인체 혈구암세포 U937에서 해양해면동물에서 추출된 Pectenotoxin-2에 의한 Apoptosis의 유발에 관한 연구 (Induction of Apoptosis by Pectenotoxin-2 Isolated from Marine Sponges in U937 Human Leukemic Cells)

  • 신동역;강호성;배송자;정지형;최영현
    • 한국해양바이오학회지
    • /
    • 제1권2호
    • /
    • pp.63-70
    • /
    • 2006
  • 본 연구에서는 U937 인체 백혈병 세포의 증식에 미치는 PTX-2의 영향을 조사한 결과, PTX-2의 처리에 따라 U937 세포는 처리 농도 및 처리 시간 의존적으로 심한 형태적 변형과 함께 증식이 억제되었다. 이러한 PTX-2 처리에 의한 U937 세포의 증식억제는 apoptosis 유발과 관련이 있었으며, 이를 DAPI staining에 의한 apoptotic body 형성, flow cytometry를 이용한 sub-G1 세포 빈도의 정량적 분석을 통하여 확인하였다. 이러한 PTX-2 처리에 의한 U937 세포의 apoptosis 유발은 Bcl-2 family에 속하는 anti-apoptotic 인자인 Bcl-$X_L$의 발현 감소 및 IAPs family에 속하는 유전자들의 선택적 발현 감소와 연관성이 있음을 알 수 있었다. 이상의 결과들은 인체 암세포에서 PTX-2의 항암작용을 이해하는데 중요한 자료가 될 것이고 나아가 PTX-2을 포함한 그와 유사한 항암제 후보물질들의 연구에 있어서 기초 자료로서 사용될 수 있을 것으로 생각된다.

  • PDF

Antiproliferative and Cytotoxic Effects of Resveratrol in Mitochondria-Mediated Apoptosis in Rat B103 Neuroblastoma Cells

  • Rahman, Md. Ataur;Kim, Nam-Ho;Kim, Seung-Hyuk;Oh, Sung-Min;Huh, Sung-Oh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권5호
    • /
    • pp.321-326
    • /
    • 2012
  • Resveratrol, a natural compound, has been shown to possess anti-cancer, anti-aging, anti-inflammatory, anti-microbial, and neuroprotective activities. In this study, we examined the antiproliferative and cytotoxicity properties of resveratrol in Rat B103 neuroblastoma cells; although it's molecular mechanisms for the biological effects are not fully defined. Here, we examined the cellular cytotoxicity of resveratrol by cell viability assay, antiproliferation by BrdU assay, DNA fragmentation by DNA ladder assay, activation of caspases and Bcl-2 family proteins were detected by western blot analyses. The results of our investigation suggest that resveratrol increased cellular cytotoxicity of Rat B103 neuroblastoma cells in a dose-and time-dependent manner with $IC_{50}$ of 17.86 ${\mu}M$ at 48 h. On the other hand, incubation of neuroblastoma cells with resveratrol resulted in S-phase cell cycle arrests which dose-dependently and significantly reduced BrdU positive cells through the downregulation of cyclin D1 protein. In addition, resveratrol dose-dependently and significantly downregulated the expression of anti-apoptotic protein includes Bcl-2, Bcl-xL and Mcl-1 and also activates cleavage caspase-9 and-3 via the downregulation of procaspase-9 and -3 in a dose-dependent manner which indicates that involvement of intrinsic mitochondria-mediated apoptotic pathway. In conclusion, resveratrol increases cellular cytotoxicity and inhibits the proliferation of B103 neuroblastoma cells by inducing mitochondria-mediated intrinsic caspase dependent pathway which suggests this natural compound could be used as therapeutic purposes for neuroblastoma malignancies.

동충하초 유래 cordycepin에 의한 AGS 인체 위암세포의 apoptosis 유발 (Induction of Apoptotic Cell Death by Cordycepin, an Active Component of the Fungus Cordyceps militaris, in AGS Human Gastric Cancer Cells)

  • 이혜현;정진우;최영현
    • 생명과학회지
    • /
    • 제26권7호
    • /
    • pp.847-854
    • /
    • 2016
  • Nucleoside adenosine 유도체의 하나인 cordycepin (3′-deoxyadenosine)은 Cordyceps 속에서 유래된 활성 물질 중의 하나로서 항염증, 항산화 및 항암활성을 포함한 다양한 약리학적 효능이 있는 것으로 잘 알려져 있다. 본 연구에서는 AGS 인체 위암세포의 증식에 미치는 cordycepin의 영향과 관련 기전 연구를 시도하였다. Cordycepin의 처리에 따라 AGS 세포의 생존율이 처리 농도 의존적으로 감소되었으며, DNA 단편화 및 flow cytometery 분석에 따른 apoptosis 유발 또한 유의적으로 증가하였음을 확인하였다. 이러한 cordycepin 처리에 따른 AGS 세포의 apoptosis 유도에는 TRAIL, DR5 및 FasL의 mRNA 및 단백질의 발현 증가가 연관되어 있었다. 아울러 cordycepin은 Bcl-2 family 중 pro-apoptotic 인자인 Bax의 발현은 증가시켰으며, anti-apoptotic 인자인 Bcl-2 및 Bcl-xL의 발현은 전사 및 번역 수준에서 억제시켰다. 이러한 현상들은 extrinsic 및 intrinsic apoptosis의 initiator caspase (caspase-8 및 -9) 뿐만 아니라 effector caspase인 caspase-3의 활성과 PARP 단백질의 절단 증가와 연관성이 있었다. 따라서 AGS 세포에서 cordycepin에 의한 apoptosis의 유발은 death receptor 활성과 mitochondria 기능 손상을 포함한 multiple apoptotic pathway가 관여할 것으로 생각된다. 비록 좀 더 세심한 기전 연구의 결과가 뒤따라야 되겠지만, 본 연구의 결과는 cordycepin의 항암작용을 이해하는데 중요한 자료가 될 것이며 향후 수행될 추가 실험을 위한 기초 자료로서 그 가치가 매우 높을 것으로 생각된다.

Bag-1L is a Stress-withstand Molecule Prevents the Downregulation of Mcl-1 and c-Raf Under Control of Heat Shock Proteins in Cisplatin Treated HeLa Cervix Cancer Cells

  • Ozfiliz, Pelin;Arisan, Elif Damla;Coker-Gurkan, Ajda;Obakan, Pinar;Eralp, Tugce Nur;Dinler-Doganay, Gizem;Palavan-Unsal, Narcin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권11호
    • /
    • pp.4475-4482
    • /
    • 2014
  • Background: Cisplatin, a DNA damaging agent, induces apoptosis through increasing DNA fragmentation. However, identification of intrinsic resistance molecules against Cisplatin is vital to estimate the success of therapy. Bag-1 (Bcl-2-associated anthanogene) is one anti-apoptotic protein involved in drug resistance impacting on therapeutic efficiency. Elevated levels of this protein are related with increase cell proliferation rates, motility and also cancer development. For this reason, we aimed to understand the role of Bag-1 expression in Cisplatin-induced apoptosis in HeLa cervix cancer cells. Cisplatin decreased cell viability in time- and dose-dependent manner in wt and Bag-1L+HeLa cells. Although, $10{\mu}M$ Cisplatin treatment induced cell death within 24h by activating caspases in wt cells, Bag-1L stable transfection protected cells against Cisplatin treatment. To assess the potential protective role of Bag-1, we first checked the expression profile of interacting anti-apoptotic partners of Bag-1. We found that forced Bag-1L expression prevented Cisplatin-induced apoptosis through acting on Mcl-1 expression, which was reduced after Cisplatin treatment in wt HeLa cells. This mechanism was also supported by the regulation of heat shock protein (Hsp) family members, Hsp90 and Hsp40, which were involved in the regulation Bag-1 interactome including several anti-apoptotic Bcl-2 family members and c-Raf.

Antiapoptotic Effect of Paricalcitol in Gentamicin-induced Kidney Injury

  • Suh, Sang Heon;Lee, Ko Eun;Park, Jeong Woo;Kim, In Jin;Kim, Ok;Kim, Chang Seong;Choi, Joon Seok;Bae, Eun Hui;Ma, Seong Kwon;Lee, Jong Un;Kim, Soo Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권5호
    • /
    • pp.435-440
    • /
    • 2013
  • While the anti-apoptotic effect of paricalcitol has been demonstrated in various animal models, it is not yet clear whether paricalcitol attenuates the apoptosis in gentamicin (GM)-induced kidney injury. We investigated the effect of paricalcitol on apoptotic pathways in rat kidneys damaged by GM. Rats were randomly divided into three groups: 1) Control group (n=8), where only vehicle was delivered, 2) GM group (n=10), where rats were treated with GM (150 mg/kg/day) for 7 days, 3) PARI group (n=10), where rats were co-treated with paricalcitol (0.2 ${\mu}g/kg/day$) and GM for 7 days. Paricalcitol attenuated renal dysfunction by GM administration in biochemical profiles. In terminal deoxynucleotidyl transferase dUTP nick end labeling staining, increased apoptosis was observed in GM group, which was reversed by paricalcitol co-treatment. Immunoblotting using protein samples from rat cortex/outer stripe of outer medulla showed increased Bax/Bcl-2 ratio and cleaved form of caspase-3 in GM group, both of which were reversed by paricalcitol. The phosphorylated Jun-N-terminal kinase (JNK) expression was increase in GM, which was counteracted by paricalcitol. The protein expression of p-Akt and nitro-tyrosine was also enhanced in GM-treated rats compared with control rats, which was reversed by paricalcitol co-treatment. Paricalcitol protects GM-induced renal injury by antiapoptotic mechanisms, including inhibition of intrinsic apoptosis pathway and JNK.

Stigmalactam from Orophea Enterocarpa Induces Human Cancer Cell Apoptosis Via a Mitochondrial Pathway

  • Banjerdpongchai, Ratana;Wudtiwai, Benjawan;Pompimon, Wilart
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10397-10400
    • /
    • 2015
  • Stigmalactam, an aristolactam-type alkaloid extracted from Orophea enterocarpa, exerts cytotoxicity against several human and murine cancer cell lines, but the molecular mechanisms remain elusive. The aims of this study were to identify the mode and mechanisms of human cancer cell death induced by stigmalactam employing human hepatocellular carcinoma HepG2 and human invasive breast cancer MDA-MB-231 cells as models, compared to normal murine fibroblasts. It was found that stigmalactam was toxic to HepG2 and MDA-MB-231 cells with $IC_{50}$ levels of $23.0{\pm}2.67{\mu}M$ and $33.2{\pm}4.54{\mu}M$, respectively, using MTT assays. At the same time the $IC_{50}$ level towards murine normal fibroblast NIH3T3 cells was $24.4{\pm}6.75{\mu}M$. Reactive oxygen species (ROS) production was reduced in stigmalactam-treated cells dose dependently after 4 h of incubation, indicating antioxidant activity, measured by using 2',7',-dichlorohydrofluorescein diacetate and flow cytometry. Caspase-3 and caspase-9 activities were increased in a dose response manner, while stigmalactam decreased the mitochondrial transmembrane potential dose-dependently in HepG2 cells, using 3,3'-dihexyloxacarbocyanine iodide and flow cytometry, indicating mitochondrial pathway-mediated apoptosis. In conclusion, stigmalactam from O. enterocarpa was toxic to both HepG2 and MDA-MB-231 cells and induced human cancer HepG2 cells to undergo apoptosis via the intrinsic (mitochondrial) pathway.

Assessment of the Cytotoxic and Apoptotic Effects of Chaetominine in a Human Leukemia Cell Line

  • Yao, Jingyun;Jiao, Ruihua;Liu, Changqing;Zhang, Yupeng;Yu, Wanguo;Lu, Yanhua;Tan, Renxiang
    • Biomolecules & Therapeutics
    • /
    • 제24권2호
    • /
    • pp.147-155
    • /
    • 2016
  • Chaetominine is a quinazoline alkaloid originating from the endophytic fungus Aspergillus fumigatus CY018. In this study, we showed evidence that chaetominine has cytotoxic and apoptotic effects on human leukemia K562 cells and investigated the pathway involved in chaetominine-induced apoptosis in detail. Chaetominine inhibited K562 cell growth, with an $IC_{50}$ value of 35 nM, but showed little inhibitory effect on the growth of human peripheral blood mononuclear cells. The high apoptosis rates, morphological apoptotic features, and DNA fragmentation caused by chaetominine indicated that the cytotoxicity was partially caused by its pro-apoptotic effect. Under chaetominine treatment, the Bax/Bcl-2 ratio was upregulated (from 0.3 to 8), which was followed by a decrease in mitochondrial membrane potential, release of cytochrome c from mitochondria into the cytosol, and stimulation of Apaf-1. Furthermore, activation of caspase-9 and caspase-3, which are the main executers of the apoptotic process, was observed. These results demonstrated that chaetominine induced cell apoptosis via the mitochondrial pathway. Chaetominine inhibited K562 cell growth and induced apoptotic cell death through the intrinsic pathway, which suggests that chaetominine might be a promising therapeutic for leukemia.

Phytochemicals from Goniothalamus griffithii Induce Human Cancer Cell Apoptosis

  • Banjerdpongchai, Ratana;Khaw-on, Patompong;Pompimon, Wialrt
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권7호
    • /
    • pp.3281-3287
    • /
    • 2016
  • Bioactive compounds extracted from leaves and twigs of Goniothalamus griffithii include pinocembrin (PCN) and goniothalamin (GTN). The objectives of this study were to investigate the cytotoxic activities of PCN and GTN and their influence on molecular signaling for cell death in several human cancer cell lines compared to normal murine fibroblast NIH3T3 cells. GTN exhibited the most potent cytotoxicity against MCF-7 > HeLa > HepG2 > NIH3T3 cells with $IC_{50}$ values of 7.33, 14.8, 37.1 and $65.4{\mu}M$, respectively, whereas PCN was cytotoxic only to HepG2 cells with $IC_{50}$ values of ${\sim}80{\mu}M$. Apoptotic cell death was confirmed by staining the cells with annexin V-FITC and propidium iodide (PI) employing flow cytometry. Apoptosis was shown by externalization of phosphatidylserine in goniothalamin-treated MCF-7 cells in a dose response manner. Positive PI-stained cells with the typical morphology of apoptotic cells were increased dose-dependently. Furthermore, reduction of mitochondrial transmembrane potential was found in goniothalamin-treated MCF-7, HepG2 and HeLa cells. GTN treatment in MCF-7 increased caspase-3, -8 and -9 activities while GTN-induced HeLa cells showed an increase of both caspase-3 and -9 activities. But an increased caspase-8 activity was demonstrated in GTN- and PCN-treated MCF-7 and HepG2 cells, respectively. Taken together, GTN- and PCN-induced human cancer cell apoptosis was through different molecular mechanisms or signaling pathways, which might be due to different machineries in different types of cancer cells, as evidenced by the compound-modulated caspase activities in both intrinsic and/or extrinsic pathways.

폐암세포주(肺癌細胞株) H460에 대(對)한 보중익기탕(補中益氣湯)의 세포고사효과(細胞枯死效果) 및 기전연구(機轉硏究) (Study on Apoptosis Effect and Mechanism by Bojungikki-tang on Human Cancer Cell Line H460)

  • 이승언;홍재의;이시형;신조영;노승석
    • 대한한방내과학회지
    • /
    • 제25권4호
    • /
    • pp.274-288
    • /
    • 2004
  • Objectives : This study was designed to evaluate the effect on cytotoxicity of Bojungikki-tang(BIT) in human lung cancer H460 cells. Methods : BIT-induced cell death was confirmed as apoptosis characterized by chromatin condensation and increase of the $sub-G_1$, DNA content. It was tested whether the water extract of BIT affects the cell cycle regulators such as, p2l/Cipl, p27/Kipl, cyclin $B_1$. Results : The data showed that treatment of BIT decreased the viability of H460 cells in a dose-dependent manner. p2l/Cip1 is gradually decreased by the addition of the cells with BIT extract. Interestingly, p27/Kip1 is not detected for 24 hr after the addition of BIT extract, however, after 24 hr, p27/Kipl markedly increased. In addition, cyclin $B_1$, decreased in a time dependent manner after the addition of the water extract. The activation of caspase -3 protease was further confirmed by degradation of procaspase-8 protease andpoly(ADP-ribose) polymerase(P ARP) by BIT in H460 cells. Moreover, BIT induced the increase of Bak expression. Conclusion : These results suggest that the extract of BIT exerts anticancer effects to induce the death of human lung cancer H460 cells via down regulation of cell cycle regulators such as p2l/Cip1, and cyclin B1 or up regulation of cell cycle regulators such as p27/Kip1. Moerover results suggest that BIT induces an apoptosis in H460 cells via activation of intrinsic caspase cascades.

  • PDF

Anticancer Activity of Periplanetasin-5, an Antimicrobial Peptide from the Cockroach Periplaneta americana

  • Kim, In-Woo;Choi, Ra-Yeong;Lee, Joon Ha;Seo, Minchul;Lee, Hwa Jeong;Kim, Mi-Ae;Kim, Seong Hyun;Kim, Iksoo;Hwang, Jae Sam
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1343-1349
    • /
    • 2021
  • Cockroaches live in places where various pathogens exist and thus are more likely to use antimicrobial compounds to defend against pathogen intrusions. We previously performed an in silico analysis of the Periplaneta americana transcriptome and detected periplanetasin-5 using an in silico antimicrobial peptide prediction method. In this study, we investigated whether periplanetasin-5 has anticancer activity against the human leukemia cell line K562. Cell growth and survival of K562 cells treated with periplanetasin-5 were decreased in a dose-dependent manner. By using flow cytometric analysis, acridine orange/ethidium bromide (AO/EB) staining and DNA fragmentation, we found that periplanetasin-5 induced apoptotic and necrotic cell death in leukemia cells. In addition, these events were associated with increased levels of the pro-apoptotic proteins Fas and cytochrome c and reduced levels of the anti-apoptotic protein Bcl-2. Periplanetasin-5 induces the cleavage of pro-caspase-9, pro-caspase-8, pro-caspase-3, and poly (ADP-ribose) polymerase (PARP). The above data suggest that periplanetasin-5 induces apoptosis via both the intrinsic and extrinsic pathways. Moreover, caspase-related apoptosis was further confirmed by using the caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK), which reversed the periplanetasin-5-induced reduction in cell viability. In conclusion, periplanetasin-5 caused apoptosis in leukemia cells, suggesting its potential utility as an anticancer therapeutic agent.