• Title/Summary/Keyword: intrinsic apoptosis

Search Result 155, Processing Time 0.025 seconds

Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade

  • Kim, Geun-Young;Park, Soon Yong;Jo, Ara;Kim, Mira;Leem, Sun-Hee;Jun, Woo-Jin;Shim, Sang In;Lee, Sang Chul;Chung, Jin Woong
    • BMB Reports
    • /
    • v.48 no.9
    • /
    • pp.531-536
    • /
    • 2015
  • Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536]

JPH203, a selective L-type amino acid transporter 1 inhibitor, induces mitochondria-dependent apoptosis in Saos2 human osteosarcoma cells

  • Choi, Dae Woo;Kim, Do Kyung;Kanai, Yoshikatsu;Wempe, Michael F.;Endou, Hitoshi;Kim, Jong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.599-607
    • /
    • 2017
  • Most normal cells express L-type amino acid transporter 2 (LAT2). However, L-type amino acid transporter 1 (LAT1) is highly expressed in many tumor cells and presumed to support their increased growth and proliferation. This study examined the effects of JPH203, a selective LAT1 inhibitor, on cell growth and its mechanism for cell death in Saos2 human osteosarcoma cells. FOB human osteoblastic cells and Saos2 cells expressed LAT1 and LAT2 together with their associating protein 4F2 heavy chain, but the expression of LAT2 in the Saos2 cells was especially weak. JPH203 and BCH, a non-selective L-type amino acid transporter inhibitor, potently inhibited L-leucine uptake in Saos2 cells. As expected, the intrinsic ability of JPH203 to inhibit L-leucine uptake was far more efficient than that of BCH in Saos2 cells. Likewise, JPH203 and BCH inhibited Saos2 cell growth with JPH203 being superior to BCH in this regard. Furthermore, JPH203 increased apoptosis rates and formed DNA ladder in Saos2 cells. Moreover, JPH203 activated the mitochondria-dependent apoptotic signaling pathway by upregulating pro-apoptotic factors, such as Bad, Bax, and Bak, and the active form of caspase-9, and downregulating anti-apoptotic factors, such as Bcl-2 and Bcl-xL. These results suggest that the inhibition of LAT1 activity via JPH203, which may act as a potential novel anti-cancer agent, leads to apoptosis mediated by the mitochondria-dependent intrinsic apoptotic signaling pathway by inducing the intracellular depletion of neutral amino acids essential for cell growth in Saos2 human osteosarcoma cells.

Arctigenin induces caspase-dependent apoptosis in FaDu human pharyngeal carcinoma cells

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Lim, HyangI;Seo, Jeong-Yeon;Park, Jong-Hyun;Chun, Hong Sung;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Kim, Do Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.447-456
    • /
    • 2022
  • The present study was carried out to investigate the effect of Arctigenin on cell growth and the mechanism of cell death elicited by Arctigenin were examined in FaDu human pharyngeal carcinoma cells. To determine the apoptotic activity of Arctigenin in FaDu human pharyngeal carcinoma cells, cell viability assay, DAPI staining, caspase activation analysis, and immunoblotting were performed. Arctigenin inhibited the growth of cells in a dose-dependent manner and induced nuclear condensation and fragmentation. Arctigenin-treated cells showed caspase-3/7 activation and increased apoptosis versus control cells. FasL, a death ligand associated with extrinsic apoptotic signaling pathways, was up-regulated by Arctigenin treatment. Moreover, caspase-8, a part of the extrinsic apoptotic pathway, was activated by Arctigenin treatments. Expressions of anti-apoptotic factors such as Bcl-2 and Bcl-xL, components of the mitochondria-dependent intrinsic apoptosis pathway, significantly decreased following Arctigenin treatment. The expressions of pro-apoptotic factors such as BAX, BAD and caspase-9, and tumor suppressor -53 increased by Arctigenin treatments. In addition, Arctigenin activated caspase-3 and poly (ADP-ribose) polymerase (PARP) induced cell death. Arctigenin also inhibited the proliferation of FaDu cells by the suppression of p38, NF-κB, and Akt signaling pathways. These results suggest that Arctigenin may inhibit cell proliferation and induce apoptotic cell death in FaDu human pharyngeal carcinoma cells through both the mitochondria-mediated intrinsic pathway and the death receptor-mediated extrinsic pathway.

Delayed Human Neutrophil Apoptosis by Trichomonas vaginalis Lysate

  • Song, Hyun-Ouk;Lim, Young-Su;Moon, Sun-Joo;Ahn, Myoung-Hee;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Neutrophils play an important role in the human immune system for protection against such microorganisms as a protozoan parasite, Trichomonas vaginalis; however, the precise role of neutrophils in the pathogenesis of trichomoniasis is still unknown. Moreover, it is thought that trichomonal lysates and excretory-secretory products (ESP), as well as live T. vaginalis, could possibly interact with neutrophils in local tissues, including areas of inflammation induced by T. vaginalis in humans. The aim of this study was to investigate the influence of T. vaginalis lysate on the fate of neutrophils. We found that T. vaginalis lysate inhibits apoptosis of human neutrophils as revealed by Giemsa stain. Less altered mitochondrial membrane potential (MMP) and surface CD16 receptor expression also supported the idea that neutrophil apoptosis is delayed after T. vaginalis lysate stimulation. In contrast, ESP stimulated-neutrophils were similar in apoptotic features of untreated neutrophils. Maintained caspase-3 and myeloid cell leukemia-1 (Mcl-1) in neutrophils co-cultured with trichomonad lysate suggest that an intrinsic mitochondrial pathway of apoptosis was involved in T. vaginalis lysate-induced delayed neutrophil apoptosis; this phenomenon may contribute to local inflammation in trichomoniasis.

Orostachys japonicus DW and EtOH Extracts Induce Apoptosis in Cholangiocarcinoma Cell Line SNU-1079

  • Choi, Eun Sol;Lee, Jang Hoon
    • The Journal of Korean Medicine
    • /
    • v.36 no.4
    • /
    • pp.19-34
    • /
    • 2015
  • Objectives: This study was performed to investigate the anti-tumor effect of O. japonicus extracts on intrahepatic cholangiocarcinoma cell line SNU-1079. Methods: Cholangiocarcinoma SNU-1079 cells were treated with various concentrations of O. japonicus DW and EtOH extracts ($0-300{\mu}g/ml$) for 24, 48 or 72 h. Cell viability was evaluated through a PMS/MTS assay, and the apoptosis rate was examined through ELISA assay and flow cytometry analysis. The mRNA expression of apoptosis- and cell cycle progression-related genes (Bcl-2, Mcl-1, Bax, Survivin, Cyclin D1, and p21) was evaluated using real-time PCR, and the caspase activity was examined using immunoblot analysis. Results: O. japonicus extracts inhibited cell proliferation and increased apoptosis rate in both ELISA assay and flow cytometry analysis. O. japonicus extracts decreased Bcl-2, Mcl-1, Survivin, and Cyclin D1 mRNA expression and increased Bax mRNA level. O. japonicus extracts also increased Caspase-3 activation. Overall, O. japonicus DW extracts were more effective than EtOH extracts. Conclusions: O. japonicus inhibited cell proliferation and induced apoptosis in SNU-1079 cells via mitochondria -mediated intrinsic pathway, which leads to Caspase-3 activation. The results indicate that O. japonicus is a potential therapeutic herb with anti-tumor effect against intrahepatic cholangiocarcinoma.

Apoptosis Induction in Human Leukemic Promyelocytic HL-60 and Monocytic U937 Cell Lines by Goniothalamin

  • Petsophonsakul, Ploingarm;Pompimon, Wilart;Banjerdpongchai, Ratana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2885-2889
    • /
    • 2013
  • Goniothalamin is an active compound extracted from Goniothalamus griffithii, a local plant found in northern Thailand. Goniothalamin inhibits cancer cell growth but is also toxic to normal cells. The aims of this study were to identify the cytotoxic effect of goniothalamin and the mechanism of cell death in human HL-60 and U937 cells. Cytotoxicity was determined by MTT assay and cell cycle profiles were demonstrated by staining with propidium iodide (PI) and flow cytometry. Apoptosis was confirmed by staining with annexin V-FITC/propidium iodide (PI) and flow cytometry. Reduction of mitochondrial transmembrane potential was determined by staining with dihexyloxacarbocyanine iodide and flow cytometry and expression of Smac, caspase-8 and -9 was demonstrated by Western blotting. Goniothalamin inhibited growth of HL-60 and U937 cell lines. An increase of SubG1 phase was found in their cell cycle profiles, indicating apoptosis as the mode of cell death. Apoptosis was confirmed by the flip-flop of phosphatidylserine using annexin V-FITC/PI assay in HL60 and U937 cells in a dose response manner. Furthermore, reduction of mitochondrial transmembrane potential was found in both cell types while expression of caspase-8, -9 and Smac/Diablo was increased in HL-60 cells. Taken together, our results indicate that goniothalamin-treated human leukemic cells undergo apoptosis via intrinsic and extrinsic pathways.

Inhibitory Effect of Snake Venom Toxin on Colorectal Cancer HCT116 Cells Growth through Induction of Intrinsic or Extrinsic Apoptosis

  • Kim, Kyung Tae;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.30 no.1
    • /
    • pp.43-55
    • /
    • 2013
  • I investigated whether snake venom toxin(SVT) from Vipera lebetina turanica enhances the apoptosis ability of tumor necrosis factor(TNF)-related apoptosis-inducing ligand(TRAIL) in cancer cells. TRAIL inhibited HCT116 cell growth in a dose-dependent manner. Consistent with cell growth inhibition, the expression of TRAIL receptors; DR4 and DR5 was significantly increased as well as apoptosis related proteins such as cleaved caspase-3, 8, 9 and Bax. However, the expression of survival proteins(eg, cFLIP, survivin, XIAP and Bcl2) was suppressed by the combination treatment of SVT and TRAIL. Pretreatment with the reactive oxygen species(ROS) scavenger N-acetylcysteine reduced the SVT and TRAIL-induced upregulation of DR4 and DR5 expression and expression of the apoptosis related protein such as caspase-3 and-9 as well as cell growth inhibitory effects. The collective results suggest that SVT facilitates TRAIL-induced apoptosis in human colorectal cancer HCT116 cells through up-regulation of the TRAIL receptors; DR4 and DR5 via ROS pathway signals.

Induction of Tumor Suppressor Gene p53-dependent Apoptosis by Sanguinarine in HCT116 Human Colorectal Cancer Cells (결장암세포에서 sanguinarine에 의한 종양억제 유전자 p53 의존적 apoptosis 유도)

  • Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.400-409
    • /
    • 2021
  • Sanguinarine, a natural benzophenanthridine alkaloid, has been considered a potential therapeutic target for the treatment of cancer because it can induce apoptosis in human cancer cells; however, the underlying mechanisms of action still remain unclear. Tumor suppressor p53 deletion or mutation is an important reason for the resistance of colorectal cancer cells to anticancer agents. Therefore, in the present study, the role of p53 during apoptosis induced by sanguinarine was investigated in p53wild type (WT, p53+/+) and p53null (p53+/+) HCT116 colon carcinoma cells. Sanguinarine significantly caused greater reductions in cell viability in HCT116 (p53+/+) cells than in HCT116 (p53-/-) cells. Consistently, sanguinarine promoted more DNA damage and apoptosis in HCT116 (p53+/+) cells than in HCT116 (p53-/-) cells while increasing the expression of p53 and cyclin-dependent kinase inhibitor p21WAF1/CIP1. Sanguinarine increased the activity of caspase-8 and caspase-9, which are involved in the initiation of extrinsic and intrinsic apoptosis pathways, respectively, and it activated caspase-3, a typical effect caspase, in HCT116 (p53+/+) cells. Sanguinarine also increased the generation of reactive oxygen species (ROS), and the Bax/Bcl-2 ratio, while destroying the integrity of mitochondria in HCT116 (p53+/+) cells, but not in HCT116 (p53-/-) cells. Overall, the results indicate that sanguinarine induced p53-dependent apoptosis through ROS-mediated activation of extrinsic and intrinsic apoptotic pathways in HCT116 colorectal cancer cells.

Increased Apoptotic Efficacy of Decitabine in Combination with an NF-kappaB Inhibitor in Human Gastric Cancer AGS Cells (핵산합성 억제제인 decitabine과 NF-κB 활성 저해제인 PDTC의 병용 처리에 의한 인체 위암세포사멸 효과 증진)

  • Choe, Won Kyung;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1268-1276
    • /
    • 2018
  • The cytidine analog decitabine (DEC) acts as a nucleic acid synthesis inhibitor, whereas ammonium pyrrolidine dithiocarbamate (PDTC) is an inhibitor of nuclear factor-${\kappa}B$. The aim of this study was to investigate the possible synergistic inhibitory effect of these two inhibitors on proliferation of human gastric cancer AGS cells. The inhibitory effect of PDTC on AGS cell proliferation was significantly increased by DEC in a concentration-dependent manner, and this inhibition was associated with cell cycle arrest at the G2/M phase and the induction of apoptosis. This induction of apoptosis by the co-treatment with PDTC and DEC was related to the induction of DNA damage, as assessed by H2AX phosphorylation. Further studies demonstrated that co-treatment with PDTC and DEC induced the disruption of mitochondrial membrane potential, increased the generation of intracellular reactive oxygen species (ROS) and the expression of pro-apoptotic Bax, and down-regulated the expression of anti-apoptotic Bcl-2, ultimately resulting in the release of cytochrome c from the mitochondria into the cytoplasm. Co-treatment with PDTC and DEC also activated caspase-8 and caspase-9, which are representative caspases of the extrinsic and intrinsic apoptosis pathways. Co-treatment also activated caspase-3, which was accompanied by proteolytic degradation of poly (ADP-ribose) polymerase. Taken together, these data clearly indicated that co-treatment with PDTC and DEC suppressed the proliferation of AGS cells by increasing DNA damage and activating the ROS-mediated extrinsic and intrinsic apoptosis pathways.

Dohaekseungkitang extract induced apoptosis in Human Cervical carcinoma HeLa cells (도핵승기탕(桃核承氣湯) 자궁경부암세포(子宮經部癌細胞)(HeLa cell)의 apoptosis에 미치는 영향(影響))

  • Kang, Yong-Goo;Ahn, Kyu-Hwan;Kong, Bok-Cheul;Kim, Song-Baeg;Cho, Han-Baek
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.19 no.2
    • /
    • pp.77-91
    • /
    • 2006
  • Purpose : To address the ability of Dohaekseungkitang (DST: a commonly used herb formulation in Korea, Japan and China to have anti-cancer effect on cervical carcinoma), we investigated the effects of DST on programmed cell death (apoptosis) in HeLa human cervical carcinoma cells. Methods : We cultured HeLa cell which is human metrocarcinoma cell in D-MEM included 10% fetal bovine serum(Hyclone Laboratories) below $37^{\circ}C$, 5% CO2. Then we observed apoptosis of log phage cell which is changed cultivation liquid 24 Hours periodically. Results : After the treatment of DST for 48 hours, apoptosis occurred in a dose-dependent manner. In this study, we have shown that DST induces calpain and the associated caspase-8 and -9 activations. Apoptosis was prevented by pre-incubation of the cells with the calcium cHeLator-BAPTA-AM, calcium channel blocker-Nif edipine or Ryonidine agonist-Ryonidine peptide, implicating calcium in the apoptotic process. Ubiquitous calpains (mu- and m-calpain) have been repeatedly implicated in apoptosis, especially in calcium-related apoptosis. However this study showed 1hat either calpain inhibitor-calpastin or caspase-3 inhibitor-DEVD- did not blocked the herb formulation-induced apoptosis in HeLa human cervical carcinoma cells. D ST initiates a cell death pathway that is partially dependent of caspases. DST-induced apoptosis requires caspase-independent mechanism. Conclusion : We conclude that DST-induced calpain activation triggers the intrinsic apoptotic pathway in which caspase-independent mechanism is also involved.

  • PDF