• Title/Summary/Keyword: intrasporangium sp.

Search Result 3, Processing Time 0.015 seconds

Microbial Conversion of Ginsenoside $Rb_1$ to Minor Ginsenoside $F_2$ and Gypenoside XVII by Intrasporangium sp. GS603 Isolated from Soil

  • Cheng, Le-Qin;Na, Ju-Ryun;Kim, Myung-Kyum;Bang, Myun-Ho;Yang, Deok-Chun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1937-1943
    • /
    • 2007
  • A new strain, GS603, having ${\beta}$-glucosidase activity was isolated from soil of a ginseng field, and its ability to convert major ginsenoside $Rb_1$ to minor ginsenoside or gypenoside was studied. Strain GS603 was identified as an Intrasporangium species by phylogenetic analysis and showed high ginsenoside-converting activity in LB and TSA broth but not in nutrient broth. The culture broth of the strain GS603 could convert ginsenoside $Rb_1$i into two metabolites, which were analyzed by TLC and HPLC and shown to be the minor ginsenoside $F_2$ and gypenoside XVII by NMR.

Regulation of Phenylalanine Specific Pathway in a Species of Intrasporangium (Intrasporangium속 방선균의 Phenylalanine 분지대사 경로의 조절)

  • 조원대;최용진;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.3
    • /
    • pp.238-245
    • /
    • 1988
  • Studies were made on the regulation of chorismate mutase and prephenate dehydratase of a species of Intrasporangium, a phenylalanine producing Actinomycete isolated from soil. Two distinctly regulated species of chorismate mutase, designated CM I and CM IIwere resolved by DEAE Cellulose and DEAE Sephadex A 50 chromatography. The activity of CM II was inhibited by L-tyrosine, whereas that of CM I appeared to be unregulated. Single species of prephenate dehydyatase was also separated in the same purification steps. The activity of the enzyme was strongly feedback inhibited by L-phenylalanine, but by L-tyrosine or L-methionine it was rather slightly stimulated. Synthesis of chorismate mutase was not influenced by the presence of phenylalanine, tyrosine or tryptophan, whereas prephenate dehydratase was found to be subject to strong feedback repression by L-phenylalanine. The rate of repression was 94% at the concentration of 1mM L-phenylalanine but the repression was completely offset by the presence of 5mM tyrosine. The critical regulatory site of the phenylalanine terminal biopathway was, therefore, proved to be the second reaction which was catalyzed by the L-phenylalanine inhibitable and repressible prephenate dehydratase.

  • PDF

Properties of Chorismate Mutase from intrasporangium sp. (Intrasporangium속 방선균의 Chorismate Mutase 성질)

  • 조원대;신광순;최용진;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.4
    • /
    • pp.310-315
    • /
    • 1988
  • Two isoenzymes of chorismate mutase(E.C.5.4.99.5) designated as chorismate mutase I(CM I) and chorismate mutase II(CM II), were detected and partially purified from a sp. of intrasporangium isolated from soil. CM I and CM II had pH optima of pH 6.5 and 8.0, respectively and showed the same temperature optimum of 45$^{\circ}C$. The activation energy of the enzymatic reaction was estimated to be 14.7kcal/ mole with CM I and 10.8kcal/mole with CM II. The affinity of isoenzyme CM I for substrate(Km= 1.35mM) was almost the same level as that of CM II(Km = 1.22mM). Both isoenzymes were stable at pH values ranged from pH 6.5 to 9.0, but rapidly denaturated at temperatures above 45$^{\circ}C$. CM II was activated about 7$^{\circ}C$ of its activity by $Ba^{++}$ or $Mg^{++}$ while CM I was slightly inhibited by the same metal ions. Thiol compounds were found not to be necessary for stability of the two enzymes but Co$^{++}$ and EDTA had a little stabilizing effect on CM II only. p-Chloromercuribenzoate strongly inactivated the activities of both enzymes but the reducing agents such as dithiothreitol and L-cysteine protected them against the pCMB inhibition.

  • PDF