• Title/Summary/Keyword: intracellular eubacteria

Search Result 4, Processing Time 0.018 seconds

Seasonal Changes of bacterial community analysed by fluorescent in situ hybridization method in Lake Soyang (Fluorescent In Situ Hybridization방법으로 분석한 소양호 세균 군집 구조의 계절적 변화)

  • Hong, Sun-Hee;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.169-174
    • /
    • 1998
  • To define the structure and diversity of bacterial communities in the aqutic ecosystem, Lake Soyang, the largest artificial reservoir in Korea, a new method, fluorescent in situ hybridization was applied. This technique relies on the specific hybridization of the nucleic acid probes to the naturally amplified intracellular rRNA. By this method, the bacterial community composition of Lake Soyang and bacterial numbers belong to eubacteria, proteobacteria and Cytophaga-Flavobacterium group were estimated. Total bacterial numbers ranged from $0.3{\times}10^6{\sim}2.0{\times}10^6cells{\cdot}ml^{-1}$, and vertical profile of total bacteria showed the peak at 2 and 5 m depths. The ratio of eubacteria to total bacteria were 22~100% and varied with depth and season. The percentage of Proteobacteria ${\alpha}$-group ranged 2.6~66.7%, ${\beta}$-group 4.5~53.5%, ${\gamma}$-group 4.6~76.7% and Cytophaga-Flavobacterium group 2.1~35.9%. Also, bacteria] community had spatial and temporal characteristics. The dominant groups were ${\beta}$-group in winter, ${\gamma}$-group in spring and early summer and ${\alpha}$-group in summer.

  • PDF

Comparison of Metabolic Pathways of Less Orthologous Prokaryotes than Mycoplasma genitalium (Mycoplasma genitalium 보다 보존적 유전자 수가 작은 원핵생물들의 대사경로 비교)

  • Lee, Dong-Geun
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.369-375
    • /
    • 2018
  • Mycoplasma genitalium has 367 conserved genes and the smallest genome among mono-culturable prokaryotes. Conservative metabolic pathways were examined among M. genitalium and 14 prokaryotes, one hyperthermophilic exosymbiotic archaeon Nanoarchaeum equitans and 13 intracellular eubacteria of plants or insects, with fewer conserved genes than M. genitalium. They have 11 to 71 metabolic pathways, however complete metabolic pathways ranged from 1 to 24. Totally, metabolic pathway hole is very high due to the lack of 45.8% of the enzymes required for the whole metabolic pathways and it could be suggested that the shared metabolic pathway with the host's enzyme would work or the essential substances are host dependent. The number of genes necessary for mass transfer through the cell membrane is also very low, and it may be considered that the simple diffusion or the protein of the host will function in the cell membrane of these prokaryotes. Although the tRNA charging pathway was distributed in all 15 prokaryotes, each has 5-20 tRNA charging genes. This study would give clues to the understanding of the metabolic pathways of intracellular parasitic bacteria of plant and endosymbiotic bacteria of insects, and could provide basic data for prevention of crop damage, development of insect pests and human medicines.

Visualization of periodontopathic bacteria within crevicular epithelial cells with fluorescence in situ hybridization (형광제자리부합법을 이용한 치은열구세포 내의 치주염 유발 세균의 관찰)

  • Ko, Young-Kyung
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.691-698
    • /
    • 2008
  • Purpose: Periodontal pathogens can invade the host tissue. Morphologic studies have revealed bacteria within the pocket epithelium, gingival connective tissues, alveolar bone, and oral epithelium. The objective of this study was to visualize and evaluate presence of Porphyromonas gingivalis and Tannerella forsythia in crevicular epithelial cells of periodontally healthy subjects and chronic periodontitis patients. Materials and Methods: A total of 666 crevicular epithelial cells in the samples obtained from 27 chronic periodontitis patients and 9 healthy volunteers were examined. Specific probes for P. gingivalis and T. forsythia and a universal probe for detection of all eubacteria targeting 168 rRNA for fluorescence in situ hybridization was used in conjunction with confocal laser scanning microscopy. Results: 98.99% of sulcular epithelial cells from healthy volunteers and 84.40% of pocket epithelial cells from periodontitis patients were found to harbor bacteria. P. gingivalis and T. forsythia were discovered more often in crevicular epithelial cells from periodontitis patients. Conclusion: P. gingivalis and T. forsythia can invade crevicular epithelial cells and intracellular bacteria may act as a source of bacteria for persistent infection.

Conservative Genes of Less Orthologous Prokaryotes (Orthologs 수가 적은 원핵생물들의 보존적 유전자)

  • Lee, Dong-Geun
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.694-701
    • /
    • 2017
  • Mycoplasma genitalium represents the smallest genome among mono-cultivable prokaryotes. To discover and compare the orthologs (conservative genes) among M. genitalium and 14 prokaryotes that are uncultivable and have less orthologs than M. genitalium, COG (clusters of orthologous groups of protein) analyses were applied. The analyzed prokaryotes were M. genitalium, one hyperthermophilic exosymbiotic archaeon Nanoarchaeum equitans, four intracellular plant pathogenic eubacteria of Candidatus Phytoplasma genus, and nine endosymbiotic eubacteria of phloem- and xylem-feeding insects. Among 367 orthologs of M. genitalium, 284 orthologs were conservative between M. genitalium and at least one other prokaryote. All 15 prokaryotes commonly have 29 orthologs, representing the significance of proteins in life. They belong to 25 translation-related, including 22 ribosomal proteins, 3 subunits of RNA polymerase, and 1 protein-folding-related. Among the 15 prokaryotes, 40 orthologs were only found in all four Candidatus Phytoplasma. The other nine Candidatus, all endosymbionts with insects, showed only a single common COG0539 (ribosomal protein S1), representing the diversity of orthologs among them. These results might provide clues to understand conservative genes in uncultivable prokaryotes, and may be helpful in industrial areas, such as handling prokaryotes producing amino acids and antibiotics, and as precursors of organic synthesis.