• 제목/요약/키워드: intracellular Ca2+

검색결과 701건 처리시간 0.033초

Glutamate에 의한 세포내 칼슘농도변화와 세포독성과의 관계 (Intracellular Calcium Concentration in the Glutamate-induced Cytotoxicity in PCl2 Cell)

  • 황인영;신임철;송연숙;성민제;박혜지;이윷모;박철범;이명구;오기완
    • Toxicological Research
    • /
    • 제18권4호
    • /
    • pp.355-362
    • /
    • 2002
  • Pathophysiological elevation of intracellular calcium concentration ($[Ca^{2+}]_1$) in the neuron has been considered as an important responsible factor in the neuronal cell damages. However the mechanism of increase of $[Ca^{2+}]_1$ and the relationship between $[Ca^{2+}]_1$ level and cytotocixity have not been fully demonstrated. In the present study, real-time alteration of $[Ca^{2+}]_1$and cellular response (cell damages) in the pheochromocytoma cells (PC12) stimulated by glutamate were investigated. Glutamate dose dependently decreased cell viability determined propidium iodide fluorescence method and morphology change. Conversely related with cell damages, glutamate dose dependently increased the level of[Ca$^{2+}$$_{i}$ . To investigate the mechanism of glutamate-induced increase of $[Ca^{2+}]_1$,$[Ca^{2+}]_1$, was first measured in the cell cultured in calcium free media and in the presence of dantrolene, an inhibitor of calcium release from ryanodine receptor located in endoplasmic reticulum (ER). Similar to the increase$[Ca^{2+}]_1$ in the calcium-containing media, glutamate dose dependently increased $[Ca^{2+}]_1$ in the cell cultured in free calcium media. However pretreatment (2 hr) with 20~50 $\mu\textrm{M}$ dantrolene substantial lowered glutamate-induced increase of $[Ca^{2+}]_1$, suggesting that release of calcium from ER may be major sourse of increase of $[Ca^{2+}]_1$ in PC12 cells. Dantrolene-induced inhibition of $[Ca^{2+}]_1$ resulted in recovery of cytotoxicity by glutamate. Relevance of N-methy-D-aspartate (NMDA) receptor, a type of glutamte receptor on glutamate-induced incense of $[Ca^{2+}]_1$,$[Ca^{2+}]_1$ was also determined in the cells pretreated (2 hr) with NMDA receptor antagonist MK-80l. Glutamate-induced increase of $[Ca^{2+}]_1$ was reduced by MK-801 dose dependently. Furthermore, glutamate-induced cytotoxicity was also prevented by MK-80l. These results demonstrate that glutamte increase $[Ca^{2+}]_1$ dose dependently and thereby cause cytotoxicity. The increase of $[Ca^{2+}]_1$ may release from ER, especially through ryanodine receptor and/or through NMDA receptor Alteration of calcium homeostasis through disturbance of ER system and/or calcium influx through NMDA receptor could contribute glutamate-induced cell damages.s.

심근세포내 칼슘 이온 활용도에 미치는 Vanadate 의 효과 (Effects of Vanadate on the intracellular Calcium ion activities in mvocardial cells)

  • 이정렬;김우겸
    • Journal of Chest Surgery
    • /
    • 제21권2호
    • /
    • pp.291-298
    • /
    • 1988
  • The effect of Vanadate on the isometric contraction, membrane potential and intracellular calcium ion activities of rabbit myocardial cells were investigated, using calcium selective microelectrode, filled with neutral calcium ion carrier, ETH-1001. The resting tension, the membrane potential and the intracellular calcium ion activities were recorded in normal Tyrode solution and compared with those in the contracture induced by 10 mM Vanadate. The following results were obtained: 1. The dose-response relationship between the contraction of Vanadate and twitch tension showed near-maximum response in 5mM with no corresponding changes in action potential. 2. The resting tension increased up to the amplitude of a control twitch in 10mM Vanadate with resting membrane potential, hyperpolarized. 3. Increase in intracellular calcium ion activities proceeded the contracture by 10mM Vanadate which were restored to the control level in accordance with a decrease of intracellular calcium ion activities. 4. The amplitude of contractures by 10mM Vanadate were 90-120% of the control twitch tension in which the intracellular calcium ion activities were increased about 70 times from p Ca, 7.1 in the control to p Ca, 5.8 in contractures.

  • PDF

Calcium in Infectious Hematopoietic Necrosis Virus (IHNV) Infected Fish Cell Lines (Calcium in Infectious Hematopoietic Necrosis Virus (IHNV) Infected Fish Cell Lines)

  • 김남식;허강준;이찬희
    • Journal of Microbiology
    • /
    • 제34권3호
    • /
    • pp.263-263
    • /
    • 1996
  • Infection of fish cells with IHNV resulted in gradual increase in cytosolic free $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ in CHSE, gradual decrease in $[Ca^{2+}]_i$ in FHM, and no significant change in RTG cells. The degree of $[Ca^{2+}]_i$ increase or decrease was dependent on the amount of infectious virus, and these $[Ca^{2+}]_i$ variations were maximal at 16 hours after virus infection (p. i.) in both cell lines. When the fish cells were infected with inactivated IHNV, evident variation in $[Ca^{2+}]_i$ was not observed. Thus, infectivity of IHNV appears to correlate with changes in $[Ca^{2+}]_i$ in virus-infected cells. These IHNV-induced $[Ca^{2+}]_i$ changes were partially blocked by cycloheximide, but not affected by cordycepin. It seems to be that virus-induced $Ca^{2+}$ variations were more related with protein synthesis than RNA synthesis. Various $Ca^{2+}$ related drugs were used in search for the mechanisms of the $[Ca^{2+}]_i$, changes following IHNV infection of CHSE cells. Decreasing extracellular $Ca^{2+}$ concentration or blocking $Ca^{2+}$ influx from extracellular media inhibited the IHNV-induced increase in $[Ca^{2+}]_i$, in CHSE cells. Similar results were obtained with intracellular $Ca^{2+}$ blockers. Thus it is suggested that both the extracellular and the intracellular $Ca^{2+}$ sources are important in IHNV-induced $[Ca^{2+}]_i$ increase in CHSE cells.

The Effects of DTBNP on Intracellular $Ca^{2+}$ Signaling in Cultured Bovine Aortic Endothelial Cells

  • Park, Sung-Jin;Kim, Byung-Joo;Zhu, Mei-Hong;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권6호
    • /
    • pp.341-346
    • /
    • 2005
  • The mechanism underlying oxidant-induced intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) increase was studied in cultured bovine aortic endothelial cells (BAECs) using fura-2 AM. In the presence of 2 mM extracellular $Ca^{2+}$, the application of DTBNP ($20{\mu}M$), a membrane-permeable oxidant, caused an increase in $[Ca^{2+}]_i$, and DTT (2 mM) as a reductant completely reversed the effect of DTBNP. The $[Ca^{2+}]_i$ increase induced by DTBNP was also observed in an extracellular $Ca^{2+}$-free/2 mM EGTA solution, indicating the release of $Ca^{2+}$ from intracellular store(s). After endoplasmic reticulum was depleted by an $IP_3$-generating agonist, ATP ($30{\mu}M$) or an ER $Ca^{2+}$ pump inhibitor, thapsigargin ($1{\mu}M$), DTBNP-stressed BAECs showed an increase of $[Ca^{2+}]_i$ in $Ca^{2+}$-free/2 mM EGTA solution. Ratio-differences before and after the application of DTBNP after pretreatment with ATP or thapsigargin were $0.42{\pm}0.15$ and $0.49{\pm}0.07$, respectively (n=7), which are significantly reduced, compared to the control value of $0.72{\pm}0.07$ in a $Ca^{2+}$-free/2 mM EGTA solution. After the protonophore CCCP ($10{\mu}M$) challenge to release mitochondrial $Ca^{2+}$, the similar result was obtained. Ratio-difference before and after the application of DTBNP after pretreatment with CCCP was $0.46{\pm}0.09$ (n=7). Simultaneous application of thapsigargin and CCCP completely abolished the DTBNP-induced $[Ca^{2+}]_i$ increase. The above results together indicate that the increase of $[Ca^{2+}]_i$ by DTBNP resulted from the release of $Ca^{2+}$ from both endoplasmic reticulum and mitochondria.

The Effects of Silica Nanoparticles in Macrophage Cells

  • Kim, Seungjae;Jang, Jiyoung;Kim, Hyojin;Choi, Hoon;Lee, Kangtaek;Choi, In-Hong
    • IMMUNE NETWORK
    • /
    • 제12권6호
    • /
    • pp.296-300
    • /
    • 2012
  • Silica nanoparticles, which are applicable in many industrial fields, have been reported to induce cellular changes such as cytotoxicity in various cells and fibrosis in lungs. Because the immune system is the primary targeting organ reacting to internalized exogenous nanoparticles, we tried to figure out the immunostimulatory effect of silica nanoparticles in macrophages using differently sized silica nanoparticles. Using U937 cells we assessed cytotoxicity by CCK-8 assay, ROS generation by CM-$H_2DCFDA$, intracellular $Ca^{{+}{+}}$ levels by staining with Fluo4-AM and IL-8 production by ELISA. At non-toxic concentration, the intracellular $Ca^{{+}{+}}$ level has increased immediately after exposure to 15 nm particles, not to larger particles. ROS generation was detected significantly in response to 15 nm particles. However, all three different sizes of silica nanoparticles induced IL-8 production. 15 nm silica nanoparticles are more stimulatory than larger particles in cytotoxicity, intracellular $Ca^{{+}{+}}$ increase and ROS generation. But IL-8 production was induced to same levels with 50 or 100 nm particles. Therefore, IL-8 production induced by silica nanoparticles may be dependent on other mechanisms rather than intracellular $Ca^{{+}{+}}$ increase and ROS generation.

[$Ca^{2+}$ Signalling in Endothelial Cells: Role of Ion Channels

  • Nilius, Bernd;Viana, Felix;Kamouchi, Masahiro;Fasolato, Cristina;Eggermont, Jan;Droogmans, Guy
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권2호
    • /
    • pp.133-145
    • /
    • 1998
  • $Ca^{2+}-signals$ in endothelial cells are determined by release from intracellular stores and entry through the plasma membrane. In this review, the nature of $Ca^{2+}$ entry and mechanisms of its control are reviewed. The following ion channels play a pivotal role in regulation of the driving force for $Ca^{2+}$ entry: an inwardly rectifying $K^+$ channel, identified as Kir2.1, a big-conductance, $Ca^{2+}-activated$ $K^+$ channel (hslo) and at least two $Cl^-$ channels (a volume regulated $Cl^-$ channel, VRAC, and a $Ca^{2+}$ activated $Cl^-$ channel, CaCC). At least two different types of $Ca^{2+}$-entry channels exist: 1. A typical CRAC-like, highly selective $Ca^{2+}$ channel is described. Current density for this $Ca^{2+}$ entry is approximately 0.1pA/pF at 0 mV and thus 10 times smaller than in Jurkat or mast cells. 2. Another entry pathway for $Ca^{2+}$ entry is a more non-selective channel, which might be regulated by intracellular $Ca^{2+}$. Although detected in endothelial cells, the functional role of trp1,3,4 as possible channel proteins is unclear. Expression of trp3 in macrovascular endothelial cells from bovine pulmonary artery induced non-selective cation channels which are probably not store operated or failed to induce any current. Several features as well as a characterisation of $Ca^{2+}$-oscillations in endothelial cells is also presented.

  • PDF

Effects of Cryopreservation on Ca2+ Signals Induced by Membrane Depolarization, Caffeine, Thapsigargin and Progesterone in Boar Spermatozoa

  • Kim, Joon-Chul;Li, Yuhua;Lee, Sunwoo;Yi, Young-Joo;Park, Chang-Sik;Woo, Sun-Hee
    • Molecules and Cells
    • /
    • 제26권6호
    • /
    • pp.558-565
    • /
    • 2008
  • Although the fertilizing ability of spermatozoa is greatly reduced after freezing, complete understanding of alterations induced by cryopreservation has not been elucidated. The present study evaluates the effects of cryopreservation on the $Ca^{2+}$ handling of boar spermatozoa using several sperm activators. Intracellular $Ca^{2+}$ signals from single spermatozoa were measured using confocal $Ca^{2+}$ imaging of unfrozen samples and of other spermatozoa after having been frozen. Elevation of the external $K^{2+}$ concentration elicited a three times larger $Ca^{2+}$ increase in fresh spermatozoa than in cryopreserved spermatozoa. Caffeine elicited $Ca^{2+}$ transients with some oscillations in the fresh spermatozoa, but not in the thawed spermatozoa. Depletion of the $Ca^{2+}$ store with thapsigargin induced a rapid rise in $Ca^{2+}$ in the control but generated a smaller increase of $Ca^{2+}$ after thawing. Exposure to progesterone induced a biphasic rise of the $Ca^{2+}$ level in the fresh spermatozoa only. Sperm viability was reduced by cryopreservation. Resting $Ca^{2+}$ levels in fresh and cryopreserved spermatozoa were similar. Longer incubation (2.5 h) of thawed spermatozoa partly recovered the $Ca^{2+}$ response to the interventions. These results suggest that cryopreservation reduces the responsiveness of spermatozoa to depolarization, modulators of the internal $Ca^{2+}$ store and progesterone in terms of the $Ca^{2+}$ signal, thus providing a possible mechanism for reduced fertility observed in cryopreserved boar spermatozoa.

A Portulaca oleracea L. extract promotes insulin secretion via a K+ATP channel dependent pathway in INS-1 pancreatic β-cells

  • Park, Jae Eun;Han, Ji Sook
    • Nutrition Research and Practice
    • /
    • 제12권3호
    • /
    • pp.183-190
    • /
    • 2018
  • BACKGROUND/OBJECTIVE: This study was designed to investigate how a Portulaca oleracea L. extract (POE) stimulates insulin secretion in INS-1 pancreatic ${\beta}-cells$. MATERIALS/METHOD: INS-1 pancreatic ${\beta}-cells$ were incubated in the presence of various glucose concentrations: 1.1 or 5.6, 16.7 mM glucose. The cells were treated with insulin secretagogues or insulin secretion inhibitor for insulin secretion assay using an insulin ELISA kit. In order to quantify intracellular influx of $Ca^{2+}$ caused by POE treatment, the effect of POE on intracellular $Ca^{2+}$ in INS-1 pancreatic ${\beta}-cells$ was examined using Fluo-2 AM dye. RESULTS: POE at 10 to $200{\mu}g/mL$ significantly increased insulin secretion dose-dependently as compared to the control. Experiments at three glucose concentrations (1.1, 5.6, and 16.7 mM) confirmed that POE significantly stimulated insulin secretion on its own as well as in a glucose-dependent manner. POE also exerted synergistic effects on insulin secretion with secretagogues, such as L-alanine, 3-isobutyl-1-methylxanthine, and especially tolbutamide, and at a depolarizing concentration of KCl. The insulin secretion caused by POE was significantly attenuated by treatment with diazoxide, an opener of the $K{^+}_{ATP}$ channel (blocking insulin secretion) and by verapamil (a $Ca^{2+}$ channel blocker). The insulinotropic effect of POE was not observed under $Ca^{2+}$-free conditions in INS-1 pancreatic ${\beta}-cells$. When the cells were preincubated with a $Ca^{2+}$ fluorescent dye, Fluo-2 (acetoxymethyl ester), the cells treated with POE showed changes in fluorescence in red, green, and blue tones, indicating a significant increase in intracellular $Ca^{2+}$, which closely correlated with increases in the levels of insulin secretion. CONCLUSIONS: These findings indicate that POE stimulates insulin secretion via a $K{^+}_{ATP}$ channel-dependent pathway in INS-1 pancreatic ${\beta}-cells$.