• Title/Summary/Keyword: intracellular ATP level

Search Result 33, Processing Time 0.025 seconds

Sildenafil Ameliorates Advanced Glycation End Products-Induced Mitochondrial Dysfunction in HT-22 Hippocampal Neuronal Cells

  • Sung, Soon Ki;Woo, Jae Suk;Kim, Young Ha;Son, Dong Wuk;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.3
    • /
    • pp.259-268
    • /
    • 2016
  • Objective : Accumulation of advanced glycation end-products (AGE) and mitochondrial glycation is importantly implicated in the pathological changes of the brain associated with diabetic complications, Alzheimer disease, and aging. The present study was undertaken to determine whether sildenafil, a type 5 phosphodiesterase type (PDE-5) inhibitor, has beneficial effect on neuronal cells challenged with AGE-induced oxidative stress to preserve their mitochondrial functional integrity. Methods : HT-22 hippocampal neuronal cells were exposed to AGE and changes in the mitochondrial functional parameters were determined. Pretreatment of cells with sildenafil effectively ameliorated these AGE-induced deterioration of mitochondrial functional integrity. Results : AGE-treated cells lost their mitochondrial functional integrity which was estimated by their MTT reduction ability and intracellular ATP concentration. These cells exhibited stimulated generation of reactive oxygen species (ROS), disruption of mitochondrial membrane potential, induction of mitochondrial permeability transition, and release of the cytochrome C, activation of the caspase-3 accompanied by apoptosis. Western blot analyses and qRT-PCR demonstrated that sildenafil increased the expression level of the heme oxygenase-1 (HO-1). CoPP and bilirubin, an inducer of HO-1 and a metabolic product of HO-1, respectively, provided a similar protective effects. On the contrary, the HO-1 inhibitor ZnPP IX blocked the effect of sildenafil. Transfection with HO-1 siRNA significantly reduced the protective effect of sildenafil on the loss of MTT reduction ability and MPT induction in AGE-treated cells. Conclusion : Taken together, our results suggested that sildenafil provides beneficial effect to protect the HT-22 hippocampal neuronal cells against AGE-induced deterioration of mitochondrial integrity, and upregulation of HO-1 is involved in the underlying mechanism.

Functional Defect and Its Possible Mechanism of Diabetic Cardiomyopathy (당뇨성 심근질환에서의 근장그물 기능이상과 그 작용기전)

  • Kim, Hae-Won;Lee, Hee-Ran;Jang-Yang, Yeon-Jin;Park, Hyoung-Sup;Park, So-Young
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.195-202
    • /
    • 1993
  • Oxidative modification of cellular proteins and lipids may play a role in the development of diabetic complications. Diabetic cardiomyopathy has been suggested to be caused by the intracellular $Ca^{2+}$ overload in the myocardium, which is partly due to the defect of calcium transport of the cardiac sarcoplasmic reticulum (SR). In the present study, the possible mechanism of the functional defect of cardiac SR in diabetic rats was studied. Both of the maximal $Ca^{2+}$ uptake and the affinity for $Ca^{2+}$ were decreased in the diabetic rat SR in comparison with the control. To investigate whether the functional defect of the cardiac SR in streptozotocin-induced diabetic rat is associated with the oxidative changes of cardiac SR proteins, the carbonyl group content and glycohemoglobin levels were determined. The increase in carbonyl group content of cardiac SR (2.30 nmols/mg protein, DM; 1.78, control) and in glycohemoglobin level $(13{\sim}17%,\;DM;\;3{\sim}5%,\;control)$ were observed in the diabetics. The extent of increase in calcium transport by phospholamban phosphorylation was greater in the diabetic cardiac SR membranes than that in the control. The phosphorylation levels of phospholamban, as determined by SDS-PAGE and autoradiography with $[{\gamma}^{32}P]ATP$, were increased in diabetic cardiac SR. These results suggest that the impaired cardiac SR function in diabetic rat could be a consequence of the less-phosphorylation of phospholamban in the basal state, which is partly due to the depleted norepinephrine stores in the heart. Furthermore, the oxidative damages in cardiac SR membranes might be one of the additional factors leading to the diabetic cardiomyopathy.

  • PDF

Ginsenoside compound K protects against cerebral ischemia/ reperfusion injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy

  • Qingxia Huang;Jing Li;Jinjin Chen;Zepeng Zhang;Peng Xu;Hongyu Qi;Zhaoqiang Chen;Jiaqi Liu;Jing Lu;Mengqi Shi;Yibin Zhang;Ying Ma;Daqing Zhao;Xiangyan Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.408-419
    • /
    • 2023
  • Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2 mediated mitochondrial dynamics and bioenergy.