• 제목/요약/키워드: intra-cluster dispersion

검색결과 2건 처리시간 0.012초

Tests for homogeneity of proportions in clustered binomial data

  • Jeong, Kwang Mo
    • Communications for Statistical Applications and Methods
    • /
    • 제23권5호
    • /
    • pp.433-444
    • /
    • 2016
  • When we observe binary responses in a cluster (such as rat lab-subjects), they are usually correlated to each other. In clustered binomial counts, the independence assumption is violated and we encounter an extra-variation. In the presence of extra-variation, the ordinary statistical analyses of binomial data are inappropriate to apply. In testing the homogeneity of proportions between several treatment groups, the classical Pearson chi-squared test has a severe flaw in the control of Type I error rates. We focus on modifying the chi-squared statistic by incorporating variance inflation factors. We suggest a method to adjust data in terms of dispersion estimate based on a quasi-likelihood model. We explain the testing procedure via an illustrative example as well as compare the performance of a modified chi-squared test with competitive statistics through a Monte Carlo study.

휴리스틱 진화에 기반한 효율적 클러스터링 알고리즘 (An Efficient Clustering Algorithm based on Heuristic Evolution)

  • 류정우;강명구;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권1_2호
    • /
    • pp.80-90
    • /
    • 2002
  • 클러스터링이란 한 군집에 포함된 데이터들 간의 유사한 성질을 갖도록 데이터들을 묶는 것으로 패턴인식, 영상처리 등의 공학 분야에 널리 적용되고 있을 뿐만 아니라, 최근 많은 관심의 대상이 되고 있는 데이터 마이닝의 주요 기술로서 활발히 응용되고 있다. 클러스터링에 있어서 K-means나 FCM(Fuzzy C-means)와 같은 기존의 알고리즘들은 지역적 최적해에 수렴하는 것과 사전에 클러스터 개수를 미리 결정해야 하는 문제점을 개선하였으며, 클러스터링의 특성을 분산도와 분리도로 정의하였다. 분산도는 임의의 클러스터의 중심으로부터 포함된 데이터들이 어느 정도 흩어져 있는지를 나타내는 척도인 반면, 분리도는 임의의 데이터와 모든 클러스터 중심간의 거리의 비율로서 얻어지는 소속정도를 고려하여 클러스터 중심간의 거리를 나타내는 척도이다. 이 두 척도를 이용하여 자동으로 적절한 클러스터 개수를 결정하게 하였다. 또한 진화알고리즘의 문제점인 탐색공간의 확대에 따른 수행시간의 증가는 휴리스틱 연산을 적용함으로써 크게 개선하였다. 제안한 알고리즘의 성능 및 타당성을 보이기 위해 이차원과 다차원 실험데이타를 사용하여 실험한 결과 제안한 알고리즘의 성능이 우수함을 나타내었다.