• Title/Summary/Keyword: intra-cluster dispersion

Search Result 2, Processing Time 0.025 seconds

Tests for homogeneity of proportions in clustered binomial data

  • Jeong, Kwang Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.5
    • /
    • pp.433-444
    • /
    • 2016
  • When we observe binary responses in a cluster (such as rat lab-subjects), they are usually correlated to each other. In clustered binomial counts, the independence assumption is violated and we encounter an extra-variation. In the presence of extra-variation, the ordinary statistical analyses of binomial data are inappropriate to apply. In testing the homogeneity of proportions between several treatment groups, the classical Pearson chi-squared test has a severe flaw in the control of Type I error rates. We focus on modifying the chi-squared statistic by incorporating variance inflation factors. We suggest a method to adjust data in terms of dispersion estimate based on a quasi-likelihood model. We explain the testing procedure via an illustrative example as well as compare the performance of a modified chi-squared test with competitive statistics through a Monte Carlo study.

An Efficient Clustering Algorithm based on Heuristic Evolution (휴리스틱 진화에 기반한 효율적 클러스터링 알고리즘)

  • Ryu, Joung-Woo;Kang, Myung-Ku;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.80-90
    • /
    • 2002
  • Clustering is a useful technique for grouping data points such that points within a single group/cluster have similar characteristics. Many clustering algorithms have been developed and used in engineering applications including pattern recognition and image processing etc. Recently, it has drawn increasing attention as one of important techniques in data mining. However, clustering algorithms such as K-means and Fuzzy C-means suffer from difficulties. Those are the needs to determine the number of clusters apriori and the clustering results depending on the initial set of clusters which fails to gain desirable results. In this paper, we propose a new clustering algorithm, which solves mentioned problems. In our method we use evolutionary algorithm to solve the local optima problem that clustering converges to an undesirable state starting with an inappropriate set of clusters. We also adopt a new measure that represents how well data are clustered. The measure is determined in terms of both intra-cluster dispersion and inter-cluster separability. Using the measure, in our method the number of clusters is automatically determined as the result of optimization process. And also, we combine heuristic that is problem-specific knowledge with a evolutionary algorithm to speed evolutionary algorithm search. We have experimented our algorithm with several sets of multi-dimensional data and it has been shown that one algorithm outperforms the existing algorithms.