• Title/Summary/Keyword: intestinal microbial

Search Result 203, Processing Time 0.024 seconds

Microbial Colonization at Early Life Promotes the Development of Diet-Induced CD8αβ Intraepithelial T Cells

  • Jung, Jisun;Surh, Charles D.;Lee, You Jeong
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • Intraepithelial lymphocytes (IELs) develop through the continuous interaction with intestinal antigens such as commensal microbiome and diet. However, their respective roles and mutual interactions in the development of IELs are largely unknown. Here, we showed that dietary antigens regulate the development of the majority of $CD8{\alpha}{\beta}$ IELs in the small intestine and the absence of commensal microbiota particularly during the weaning period, delay the development of IELs. When we tested specific dietary components, such as wheat or combined corn, soybean and yeast, they were dependent on commensal bacteria for the timely development of diet-induced $CD8{\alpha}{\beta}$ IELs. In addition, supplementation of intestinal antigens later in life was inefficient for the full induction of $CD8{\alpha}{\beta}$ IELs. Overall, our findings suggest that early exposure to commensal bacteria is important for the proper development of dietary antigen-dependent immune repertoire in the gut.

Effect of Bacillus amyloliquefaciens-based Direct-fed Microbial on Performance, Nutrient Utilization, Intestinal Morphology and Cecal Microflora in Broiler Chickens

  • Lei, Xinjian;Piao, Xiangshu;Ru, Yingjun;Zhang, Hongyu;Peron, Alexandre;Zhang, Huifang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.239-246
    • /
    • 2015
  • The present study was conducted to evaluate the effect of the dietary supplementation of Bacillus amyloliquefaciens-based direct-fed microbial (DFM) on growth performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. A total of two hundred and eighty eight 1-d-old Arbor Acres male broilers were randomly allocated to one of four experimental treatments in a completely randomized design. Each treatment was fed to eight replicate cages, with nine birds per cage. Dietary treatments were composed of an antibiotic-free basal diet (control), and the basal diet supplemented with either 15 mg/kg of virginiamycin as antibiotic growth promoter (AGP), 30 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 30) or 60 mg/kg of Bacillus amyloliquefaciens-based DFM (DFM 60). Experimental diets were fed in two phases: starter (d 1 to 21) and finisher (d 22 to 42). Growth performance, nutrient utilization, morphological parameters of the small intestine and cecal microbial populations were measured at the end of the starter (d 21) and finisher (d 42) phases. During the starter phase, DFM and virginiamycin supplementation improved the feed conversion ratio (FCR; p<0.01) compared with the control group. For the finisher phase and the overall experiment (d 1 to 42) broilers fed diets with the DFM had better body weight gain (BWG) and FCR than that of control (p<0.05). Supplementation of virginiamycin and DFM significantly increased the total tract apparent digestibility of crude protein (CP), dry matter (DM) and gross energy during both starter and finisher phases (p<0.05) compared with the control group. On d 21, villus height, crypt depth and villus height to crypt depth ratio of duodenum, jejunum, and ileum were significantly increased for the birds fed with the DFM diets as compared with the control group (p<0.05). The DFM 30, DFM 60, and AGP groups decreased the Escherichia coli population in cecum at d 21 and d 42 compared with control group (p<0.01). In addition, the population of Lactobacillus was increased in DFM 30 and DFM 60 groups as compared with control and AGP groups (p<0.01). It can be concluded that Bacillus amyloliquefaciens-based DFM could be an alternative to the use of AGPs in broilers diets based on plant protein.

Ribosomally Synthesiszed Antimicrobial Peptides (Bacteriocins) in Lactic Acid Bacteria: A Review

  • Nes, Ingolf F.;Yoon, Sung-Sik;Diep, Dzung B.
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.675-690
    • /
    • 2007
  • Bacteriocins in Gram-positive bacteria have attracted much attention because many have a strong antimicrobial activity also against bacteria outside the genera of the producers. Lantibiotics and the pediocin-like bactericins have attracted most attention since they kill a broad spectrum of Gram-positive bacteria including important pathogens. But many other promising Gram-positive bacteriocins have been thoroughly characterized. Recent studies have shown that bacteriocins may playa role in the intestinal flora to protect us against the food-borne pathogens. Bacterial genome sequencing has demonstrated that there may be an arsenal of such compounds and we are only seeing the top of the iceberg. The present review gives a short outlook of the field of bacteriocins with focus on lactic acid bacteria and includes recent findings.

Gastric Cancer and Non-Helicobacter pylori Microbiota (위암과 미생물총)

  • Yu Jin Kim
    • Journal of Digestive Cancer Research
    • /
    • v.12 no.1
    • /
    • pp.6-14
    • /
    • 2024
  • Gastric cancer is the 4th leading cause of death worldwide. The primary cause of gastric cancer is known to be Helicobacter pylori (H. pylori). The advancement of molecular biology has enabled the identification of microbiomes that could not be confirmed through cultivation, and it has been revealed that the microbial communities vary among normal mucosa, atrophic gastritis, intestinal metaplasia, and gastric cancer. It has also been confirmed that the composition of the microbial community differs depending on the presence or absence of H. pylori. Whether changes in the microbiome are causative factors in the carcinogenesis process is not yet clear. Experiments using animal models and in vitro studies on the role of microbes other than H. pylori in the carcinogenic process are underway, but the data is still insufficient.

Microbial Modulation in Inflammatory Bowel Diseases

  • Jongwook Yu;Jae Hee Cheon
    • IMMUNE NETWORK
    • /
    • v.22 no.6
    • /
    • pp.44.1-44.28
    • /
    • 2022
  • Gut dysbiosis is one of prominent features in inflammatory bowel diseases (IBDs) which are of an unknown etiology. Although the cause-and-effect relationship between IBD and gut dysbiosis remains to be elucidated, one area of research has focused on the management of IBD by modulating and correcting gut dysbiosis. The use of antibiotics, probiotics either with or without prebiotics, and fecal microbiota transplantation from healthy donors are representative methods for modulating the intestinal microbiota ecosystem. The gut microbiota is not a simple assembly of bacteria, fungi, and viruses, but a complex organ-like community system composed of numerous kinds of microorganisms. Thus, studies on specific changes in the gut microbiota depending on which treatment option is applied are very limited. Here, we review previous studies on microbial modulation as a therapeutic option for IBD and its significance in the pathogenesis of IBD.

Intestinal Parasitic Infections and Environmental Water Contamination in a Rural Village of Northern Lao PDR

  • Ribas, Alexis;Jollivet, Chloe;Morand, Serge;Thongmalayvong, Boupha;Somphavong, Silaphet;Siew, Chern-Chiang;Ting, Pei-Jun;Suputtamongkol, Saipin;Saensombath, Viengsaene;Sanguankiat, Surapol;Tan, Boon-Huan;Paboriboune, Phimpha;Akkhavong, Kongsap;Chaisiri, Kittipong
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.5
    • /
    • pp.523-532
    • /
    • 2017
  • A field survey studying intestinal parasites in humans and microbial pathogen contamination at environment was performed in a Laotian rural village to identify potential risks for disease outbreaks. A parasitological investigation was conducted in Ban Lak Sip village, Luang Prabang, Lao PDR involving fecal samples from 305 inhabitants as well as water samples taken from 3 sites of the local stream. Water analysis indicated the presence of several enteric pathogens, i.e., Aeromonas spp., Vibrio spp., E. coli H7, E. coli O157: H7, verocytotoxin-producing E. coli (VTEC), Shigella spp., and enteric adenovirus. The level of microbial pathogens contamination was associated with human activity, with greater levels of contamination found at the downstream site compared to the site at the village and upstream, respectively. Regarding intestinal parasites, the prevalence of helminth and protozoan infections were 68.9% and 27.2%, respectively. Eight helminth taxa were identified in fecal samples, i.e., 2 tapeworm species (Taenia sp. and Hymenolepis diminuta), 1 trematode (Opisthorchis sp.), and 5 nematodes (Ascaris lumbricoides, Trichuris trichiura, Strongyloides stercoralis, trichostrongylids, and hookworms). Six species of intestinal protists were identified, i.e., Blastocystis hominis, Cyclospora spp., Endolimax nana, Entamoeba histolytica/E. dispar, Entamoeba coli, and Giardia lamblia. Questionnaires and interviews were also conducted to determine risk factors of infection. These analyses together with a prevailing infection level suggested that most of villagers were exposed to parasites in a similar degree due to limited socio-economic differences and sharing of similar practices. Limited access to effective public health facilities is also a significant contributing factor.

Effect of Supplementation of Bacillus subtilis LS 1-2 Grown on Citrus-juice Waste and Corn-soybean Meal Substrate on Growth Performance, Nutrient Retention, Caecal Microbiology and Small Intestinal Morphology of Broilers

  • Sen, Sinol;Ingale, S.L.;Kim, J.S.;Kim, K.H.;Kim, Y.W.;Khong, Chou;Lohakare, J.D.;Kim, E.K.;Kim, H.S.;Kwon, I.K.;Chae, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.8
    • /
    • pp.1120-1127
    • /
    • 2011
  • A feeding trial was conducted to investigate the effect of dietary supplementation of Bacillus subtilis LS 1-2 grown on citrus-juice waste and corn-soybean substrate on growth performance, nutrient retention, caecal microbial population and intestinal morphology in broilers. Three hundred twenty d-old Ross chicks were randomly allotted to 4 treatments on the basis of BW in a randomized complete block design. Each treatment had 4 replicates of 20 chicks in each. Experimental diets were fed in 2 phases, starter (d 0 to 21) and finisher (d 21 to 35). Dietary treatments were; negative control (NC: basal diet without any antimicrobial), positive control (PC: basal diet added with 20 mg/kg Avilamycin), basal diet added with 0.30% Bacillus subtilis LS 1-2 grown on corn-soybean substrate (P1), and basal diet added with 0.30% Bacillus subtilis LS 1-2 grown on citrus-juice waste substrate (P2). Overall BW gain, feed intake and FCR were better (p<0.05) in PC, P1 and P2 treatments as compared to NC. Moreover, overall BW gain and FCR in PC and P2 treatments were greater than P1. Retention of CP, GE (d 21, d 35) and DM (d 35) were increased (p<0.05) in treatments PC, P1 and P2 compared with NC. At d 35, caecal Clostridium and Coliform counts were lower (p<0.05) in treatments PC, P1 and P2 than NC. Moreover, Clostridium and Coliform counts in treatment PC was lower (p<0.05) than P1. Villus height and villus height to crypt depth ratio in both duodenum and ileum were increased (p<0.05) in treatments PC, P1, P2 as compared to NC. However, retention of nutrients, caecal microbial population and intestinal morphology remained comparable among treatments P1 and P2. It is concluded that Bacillus subtilis LS 1-2 inclusion at 0.30% level had beneficial effects on broilers' growth performance, nutrient retention, caecal microflora and intestinal morphology. Additionally, citrus-juice waste can be used as substrate for growth of probiotic Bacillus subtilis LS 1-2.

Comparative Analysis of Gut Microbial Communities in Children under 5 Years Old with Diarrhea

  • Wen, Hongyu;Yin, Xin;Yuan, Zhenya;Wang, Xiuying;Su, Siting
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.652-662
    • /
    • 2018
  • Diarrhea is a global disease with a high morbidity and mortality rate in children. In this study, 25 fecal samples were collected from children under 5 years old. Seven samples had been taken from healthy children without diarrhea and marked as the healthy control group; eight samples had been sampled from children with diarrhea caused by dyspepsia and defined as the non-infectious group; and ten samples had been taken from children with diarrhea induced by intestinal infections and identified as the infectious group. We detected the microbial communities of samples by using high-throughput sequencing of 16S rRNA genes. The proportion of aerobic and facultative anaerobic microbes in samples of the infectious group was much higher than in the non-infectious group. In addition, the relative abundance of Enterococcus in the healthy control group was significantly higher than in the non-infectious group and infectious group. This can be used as a potential diagnostic biomarker for diarrhea.

The Effects of Probiotic Lactobacillus reuteri Pg4 Strain on Intestinal Characteristics and Performance in Broilers

  • Yu, B.;Liu, J.R.;Chiou, M.Y.;Hsu, Y.R.;Chiou, W.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1243-1251
    • /
    • 2007
  • This study was conducted to evaluate the feasibility of using L. reuteri Pg4, a strain isolated from the gastrointestinal (GI) tract of healthy broilers, as a probiotic. In preliminary in vitro studies the Pg4 strain was proven capable of tolerating acid and bile salts, inhibiting pathogenic bacteria and can adhere to intestinal epithelial cells. The probiotic properties were then evaluated on the basis of the broiler's growth performance, intestinal microbial population and cecal volatile fatty acid and lactic acid concentrations under conventional feeding. Dietary supplementation of dried L. reuteri Pg4 decreased significantly feed intake in grower chickens and improved significantly the feed conversion by 5% in a 0-6 weeks feeding period compared with the control group. The Lactobacillus counts in the crop, ileum, and cecum of the probiotic group were higher than in the control group. The L. reuteri Pg4 strain was traceable in the GI tract of probiotic supplemented chicks and showed capability of survival in the intestine for a protracted period. The probiotic group had a higher lactic acid concentration and lower pH value in the cecum than the control chicks. Probiotic supplement also affected the histology of the intestinal mucosa of chicks. The present findings demonstrated that L. reuteri Pg4 possesses probiotic characteristics and it is suggested, therefore, that the organism could be a candidate for a new probiotic strain.

A Review of Interactions between Dietary Fiber and the Gastrointestinal Microbiota and Their Consequences on Intestinal Phosphorus Metabolism in Growing Pigs

  • Metzler, B.U.;Mosenthin, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.603-615
    • /
    • 2008
  • Dietary fiber is an inevitable component in pig diets. In non-ruminants, it may influence many physiological processes in the gastrointestinal tract (GIT) such as transit time as well as nutrient digestion and absorption. Moreover, dietary fiber is also the main substrate of intestinal bacteria. The bacterial community structure is largely susceptible to changes in the fiber content of a pig's diet. Indeed, bacterial composition in the lower GIT will adapt to the supply of high levels of dietary fiber by increased growth of bacteria with cellulolytic, pectinolytic and hemicellulolytic activities such as Ruminococcus spp., Bacteroides spp. and Clostridium spp. Furthermore, there is growing evidence for growth promotion of beneficial bacteria, such as lactobacilli and bifidobacteria, by certain types of dietary fiber in the small intestine of pigs. Studies in rats have shown that both phosphorus (P) and calcium (Ca) play an important role in the fermentative activity and growth of the intestinal microbiota. This can be attributed to the significance of P for the bacterial cell metabolism and to the buffering functions of Ca-phosphate in intestinal digesta. Moreover, under P deficient conditions, ruminal NDF degradation as well as VFA and bacterial ATP production are reduced. Similar studies in pigs are scarce but there is some evidence that dietary fiber may influence the ileal and fecal P digestibility as well as P disappearance in the large intestine, probably due to microbial P requirement for fermentation. On the other hand, fermentation of dietary fiber may improve the availability of minerals such as P and Ca which can be subsequently absorbed and/or utilized by the microbiota of the pig's large intestine.