• Title/Summary/Keyword: intestinal lactic acid bacteria

Search Result 174, Processing Time 0.022 seconds

Lactic Acid Bacteria Improves Peyer's Patch Cell-Mediated Immunoglobulin A and Tight-Junction Expression in a Destructed Gut Microbial Environment

  • Kim, Sung Hwan;Jeung, Woonhee;Choi, Il-Dong;Jeong, Ji-Woong;Lee, Dong Eun;Huh, Chul-Sung;Kim, Geun-Bae;Hong, Seong Soo;Shim, Jae-Jung;Lee, Jung Lyoul;Sim, Jae-Hun;Ahn, Young-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1035-1045
    • /
    • 2016
  • To evaluate the effects of lactic acid bacteria (LAB) on Peyer's patch cells, mice were treated with a high dose of kanamycin to disturb the gut microbial environment. The overarching goal was to explore the potential of LAB for use as a dietary probiotic that buffers the negative consequences of antibiotic treatment. In vitro, LAB stimulated the production of immunoglobulin A (IgA) from isolated Peyer's patch cells. Inflammation-related genes (TNF-α, IL-1β, and IL-8) were up-regulated in Caco-2 cells stimulated with lipopolysaccharide (LPS), while tight-junction-related genes (ZO-1 and occludin) were down-regulated; the effects of LPS on inflammatory gene and tight-junction gene expression were reversed by treatment with LAB. Mice treated with a high dose of kanamycin showed increased serum IgE levels and decreases in serum IgA and fecal IgA levels; the number of Peyer's patch cells decreased with kanamycin treatment. However, subsequent LAB treatment was effective in reducing the serum IgE level and recovering the serum IgA and fecal IgA levels, as well as the number of Peyer's patch cells. In addition, ZO-1 and occludin mRNA levels were up-regulated in the ileum tissues of mice receiving LAB treatment. Lactic acid bacteria can enhance the intestinal immune system by improving the integrity of the intestinal barrier and increasing the production of IgA in Peyer's patches. Lactic acid bacteria should be considered a potential probiotic candidate for improving intestinal immunity, particularly in mitigating the negative consequences of antibiotic use.

Effect of Lentinus edodes water extract on some enzymes of mouse intestinal bacteria (표고버섯 추출물 투여가 생쥐 장내세균 효소에 미치는 영향)

  • Bae, Eun-Ah;Kim, Dong-Hyun;Han, Myung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.142-145
    • /
    • 2001
  • The objective of this study was to evaluate the in vivo effect of Lentinus edodes on the harmful enzymes of mouse intestinal bacteria. When mouse intestinal microflora were cultured in the anaerobic media containing Lentinus edodes water extract or trehalose (LD) isolated From its extract, final pH of the cultured media was significantly decreased and the activities of harmful enzymes, particulary ${\beta}-glucuronidase$ and tryptophanase, were significantly inhibited. By orally administering Lentinus edodes water extract or LD, mouse fecal ${\beta}-glucuronidase$ and tryptophanase were also signifcantly inhibited.

  • PDF

In Vitro Probiotic Properties of Indigenous Dadih Lactic Acid Bacteria

  • Surono, Ingrid S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.726-731
    • /
    • 2003
  • The aim of this research was to identify candidate probiotic lactic bacteria among indigenous dadih lactic isolates. Dadih is an Indonesian traditional fermented milk of West Sumatra which is fermented naturally. Viability of the strain is critical in determining the capacity of lactic bacteria to induce immune stimulation as well as to colonize in the intestinal tract. Therefore, LAB are proposed to exert health promoting or probiotic effects in human, such as inhibition of pathogenic microflora, antimutagenic, and the reduction of cholesterol levels. This manuscript reports in vitro probiotic properties of indigenous dadih lactic bacteria, especially some important colonization factors in GI tract, such as lysozyme, acid and bile tolerance. Bile Salt Hydrolase (BSH) activity, spectrum of bacteriocin, and antimutagenic activity of bacterial cells were also assessed. Twenty dadih lactic isolates were screened further for their tolerance to low pH, at pH 2 and 3 as well as their bile tolerance. There were ten isolates classified as acid and bile acid tolerant, and further screened for lysozyme tolerance, BSH activity. The spectrum of bacteriocin activity of isolates was assayed using cell-free neutralized supernatants by agar spot test against variety of pathogens. Lc. lactis subsp. lactis IS-10285, IS-7386, IS-16183, IS-11857 and IS-29862, L. brevis IS-27560, IS-26958 and IS-23427, Leu.mesen.mesenteroides IS-27526, and L. casei IS-7257 each has good survival rate at low pH values and in the presence of lysozyme, and short lag time in the presence of 0.3 % oxgall. Lc. lactis subsp. lactis IS-11857 and IS-29862 each has high BHS activity, Lc. lactis subsp. lactis IS-10285 and IS-16183 each had a positive spectrum of bacteriocin activity against E. coli 3301 and Lysteria monocytogenes ATCC 19112, while L. brevis IS-26958 has high BHS activity as well as positive spectrum of bacteriocin against E. coli 3301, Lysteria monocytogenes ATCC 19112, and S. aureus IFO 3060. All of the ten dadih lactic strains performed in vitro acid and bile tolerance, indicating a possibility to reach the intestine alive, and display probiotic activities.

Effect of Lactic Acid Bacteria-Fermented Mulberry Leaf Extract on the Improvement of Intestinal Function in Rats

  • Lee, Hyun-Joo;Lee, Hwan;Choi, Yang-Il;Lee, Jae-Joon
    • Food Science of Animal Resources
    • /
    • v.37 no.4
    • /
    • pp.561-570
    • /
    • 2017
  • This study examined the laxative effects of mulberry leaf extract (MLE) fermented by lactic acid bacteria (LAB), which contains high levels of polyphenolic and flavonoid compounds, against loperamide-induced constipation in rats. Sprague-Dawley rats were divided into a normal group (N) and three experimental groups; loperamide treated group (C), loperamide and LAB-fermented MLE 300 mg/kg treated group (MLEL), and loperamide and LAB-fermented MLE 600 mg/kg treated group (MLEH). After 33 d, fecal pellet amount, fecal weight, water content of fecal, gastrointestinal transit time and length, and serum lipid profiles were measured. Constipation was induced via subcutaneous injection of loperamide (2.0 mg/kg b. w., twice a day) for the final 5 d of the experiment. After loperamide administration, the LAB-fermented MLE groups showed a significantly increase in the fecal pellets number, wet weight, and water content in rats compared with the C group. Moreover, increases in the intestinal length and viable Lactobacillus numbers in the feces were observed in the LAB-fermented MLE groups. The intestinal transit time was shorter in the LAB-fermented MLE groups than in the C group. In addition, the LAB-fermented MLE groups showed a significant decrease in triglyceride and total cholesterol levels and an increase in HDL-cholesterol level. These results indicated that oral administration of LAB-fermented MLE shows laxative effect in loperamide-induced constipated rats.

[Lactic Acid Bacteria] Probiotic Lactic Acid Bacteria ([유산균] 프로바이오틱 유산균)

  • Ann, Yong-Geun
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.817-832
    • /
    • 2011
  • It is said that the reason Bulgarians enjoy longevity is that they have a lot of yogurt, whose $Lactobacillus$ controls intestinal poison-producing germs. In young individuals, the number of bifidobacteria exceeds 10 billion per 1 g of intestinal content, but this number decreases for older or senile individuals, who have a larger number of harmful microorganisms such as $Clostridium$. In addition, it is well known that artificially increasing intestinal bifidobacteria can help control harmful microorganisms and thus facilitate a healthier and longer life. The microorganisms used for artificial spawn are referred to as probiotic microorganisms, and in general, lactic acid bacteria(LAB) are used. Unlike antibiotics, which kill harmful microorganisms, probiotic microorganisms coexist with and control them, while improving the health of the individual, that is, they can improve and invigorate host cells. Because probiotic microorganisms and its products based on LAB are known to help prevent and treat constipation, diarrhea, intestinal inflammation, and blood cholesterol and generally improve health through the purification of intestines, its market has been continuously expanding. Korea imports approximately 90% of spawn and uses them. It is likely that they are not appropriate for Korean's physical condition. Thus, considering this problem into account, Entecbio, a biotech firm in Korea, has produced various products by using its proprietary microorganisms. In this paper, the effects, characteristics, and kinds of products from based on proprietary microorganisms, with its prospect for market, etc., are generally examined.

Fermentation of Antler and its Biological Activity (녹용발효와 생리활성)

  • Kim, Dong-Hyun;Han, Sang-Bum;Park, Ju-Suk;Han, Myung-Joo
    • Korean Journal of Pharmacognosy
    • /
    • v.25 no.3
    • /
    • pp.233-237
    • /
    • 1994
  • Bacillus P-92 which fermented antler was isolated from intestinal bacteria. The biological activites, carbon clearance and growth activity of lactic acid bacteria, of fermented antler was better than those of untreated antler. The enyzmes activities, ${\beta}-glucosidase,\;{\beta}-glucuronidase$ and tryptophanase, of intestinal bacteria of mice treated with fermented antler were lower than those of mice treated with untreated antler, although those of mice treated with fermented antler or untreated antler were higher than those of control. Biological activity of the antler seems to be increased by fermentation.

  • PDF

The Bacillus subtilis and Lactic Acid Bacteria Probiotics Influences Intestinal Mucin Gene Expression, Histomorphology and Growth Performance in Broilers

  • Aliakbarpour, H.R.;Chamani, Mohammad;Rahimi, G.;Sadeghi, A.A.;Qujeq, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1285-1293
    • /
    • 2012
  • The aim of the present study was to evaluate the effect of commercial monostrain and multistrain probiotics in diets on growth performance, intestinal morphology and mucin gene (MUC2) expression in broiler chicks. Three hundred seventy-eight 1-d-old male Arian broiler chicks were allocated in 3 experimental groups for 6 wk. The birds were fed on a corn-soybean based diet and depending on the addition were labeled as follows: control-unsupplemented (C), birds supplemented with Bacillus subtilis (BS) and lactic acid bacteria (LAB) based probiotics. Each treatment had 6 replicates of 21 broilers each. Treatment effects on body weight, feed intake, feed conversion ratio and biomarkers such as intestinal goblet cell density, villus length, villus width, and mucin gene expression were determined. Total feed intake did not differ significantly between control birds and those fed a diet with probiotics (p>0.05). However, significant differences in growth performance were found. Final body weight at 42 d of age was higher in birds fed a diet with probiotics compared to those fed a diet without probiotic (p<0.05). Inclusion of Bacillus subtilis based probiotic in the diets also significantly affected feed conversion rate (FCR) compared with control birds (p<0.05). No differences in growth performance were observed in birds fed different types of probiotic supplemented diets. Inclusion of lactic acid bacteria based probiotic in the diets significantly increased goblet cell number and villus length (p<0.05). Furthermore, diets with Bacillus subtilis based probiotics significantly increased gene expression (p<0.05), with higher intestinal MUC2 mRNA in birds fed diet with probiotics compared to those fed the control diet. In BS and LAB probiotic fed chicks, higher growth performance may be related to higher expression of the MUC2 gene in goblet cells and/or morphological change of small intestinal tract. The higher synthesis of the mucin gene after probiotic administration may positively affect bacterial interactions in the intestinal digestive tract, intestinal mucosal cell proliferation and consequently efficient nutrient absorption.

Comparative Effects of Sodium Gluconate, Mannan Oligosaccharide and Potassium Diformate on Growth Performances and Small Intestinal Morphology of Nursery Pigs

  • Poeikhampha, T.;Bunchasak, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.844-850
    • /
    • 2011
  • This study was conducted to compare the effects of dietary supplementation of Sodium Gluconate (SG), Mannan Oligosaccharide (MOS) and Potassium Diformate (PDF) on growth performance and small intestinal morphology in nursery piglets. One hundred forty four female piglets ($11.69{\pm}0.71\;kg$) were divided into 4 treatments with six replicates of six pigs each. The pigs received a control diet or diets supplemented with SG, MOS and PDF at 2,500, 3,000 and 8,000 ppm; respectively, for 6 weeks. Supplementation of SG, MOS or PDF increased final body weight, average daily gain and tended to improve feed to gain ratio (p = 0.02, 0.04 and 0.16; respectively), other than average daily feed intake, intestinal pH and the bacterial populations were not influenced by the dietary treatments. SG significantly decreased the ammonia concentration in the caecum (p<0.05) and supplementation of SG, MOS or PDF tended to increase lactic acid and total short chain fatty acid concentration in the caecum (p = 0.08, 0.09; respectively), in addition SG, MOS or PDF slightly increased butyric acid concentration in the caecum (p = 0.14). SG highly significant increased the villous height in jejunum (p<0.01) and supplementing SG, MOS or PDF significantly increased crypt depth in jejunum (p<0.05), moreover, PDF significantly increased villous height and crypt depth ratio in jejunum (p<0.05) compared with control. The dietary treatments did not influence villous height and crypt depth in duodenum and villous height in jejunum (p>0.05). It can be concluded that supplementing SG, MOS or PDF as a feed additive has the potential to improve the growth performance, the intestinal lactic acid bacteria population, intestinal short-chain fatty acid concentration and the intestinal morphology of pigs.

Anti-Inflammatory Response in TNFα/IFNγ-Induced HaCaT Keratinocytes and Probiotic Properties of Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474

  • Ji Yeon Lee;Jeong‐Yong Park;Yulah Jeong;Chang‐Ho Kang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1039-1049
    • /
    • 2023
  • Atopic dermatitis (AD) is a chronic inflammatory disease caused by immune dysregulation. Meanwhile, the supernatant of lactic acid bacteria (SL) was recently reported to have anti-inflammatory effects. In addition, HaCaT keratinocytes stimulated by tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) are widely used for studying AD-like responses. In this study, we evaluated the anti-inflammatory effects of SL from lactic acid bacteria (LAB) on TNF-α/IFN-γ-induced HaCaT keratinocytes, and then we investigated the strains' probiotic properties. SL was noncytotoxic and regulated chemokines (macrophage-derived chemokine (MDC) and thymus and activation-regulated chemokine (TARC)) and cytokines (interleukin (IL)-4, IL-5, IL-25, and IL-33) in TNF-α/IFN-γ-induced HaCaT keratinocytes. SL from Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474 decreased the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). Furthermore, the safety of the three strains was demonstrated via hemolysis, bile salt hydrolase (BSH) activity, and toxicity tests, and the stability was confirmed under simulated gastrointestinal conditions. Therefore, L. rhamnosus MG4644, L. paracasei MG4693, and Lc. lactis MG5474 have potential applications in functional food as they are stable and safe for intestinal epithelial cells and could improve atopic inflammation.

HOW TO DEVELOPE NEW PRO BIOTIC WITH ANTI Helicohacter pylori FUNCTION

  • Lee Yeonhee
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2001.12a
    • /
    • pp.161-169
    • /
    • 2001
  • Lactic acid producing bacteria were isolated from baby feces and characterized to be used as a probiotic with anti Helicobacter pylori functions. The selected bacteria had inhibition activity on the adherance and growth of H. pylori. These bacteria had additional beneficial characteristics for the probiotic such as antibacterial activity, antitumor activity, immunostimulation activity, resistance to antibiotic and bile salt, ability to bind to the intestinal cells, and safe for the human use.

  • PDF