• Title/Summary/Keyword: intestinal lactic acid bacteria

Search Result 174, Processing Time 0.021 seconds

Effect of Lentinus edodes on the Growth of Intestinal Lactic Acid Bacteria

  • Bae, Eun-Ah;Kim, Dong-Hyun;Han, Myung-Joo
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.443-447
    • /
    • 1997
  • As the growth factor of lactic acid bacteria, LD (trehalose) was isolated from Lentinus edode5 by using silica gel column chromatography. LD induced the growth of Bifidobacteria breve and Lactobacillus brevis, which were isolated from human feces. LD selectively induced the growth of lactic acid bacteria among total microflora. When total intestinal microflora were cultured in the medium containing LD, it stimulated the growth of lactic acid bacteria and inhibited harmful enzymes, ${\beta}$-glucosidase, ${\beta}$-glucuronidase, and tryptophanase, of intestinal bacteria. LM, which was a monosaccharide from L. edooles, induced the growth of lactic acid bacteria but it seems to be invaluable in vivo. LH isolated from L. edodes by Sephadex G-100 column chromatography was not effective for the growth of lactic acid bacteria.

  • PDF

Hepatoprotective Effect of Lactic Acid Bacteria, Inhibitors of $\beta$-Glucuronidase Production Against Intestinal Microflora

  • Han Song Yi;Huh Chul Sung;Ahn Young Tae;Lim Kwang Sei;Baek Young Jin;Kim Dong Hyun
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.325-329
    • /
    • 2005
  • The hepatoprotective activity of lactic acid bacteria (Lactobacillus brevis HY7401, Lactobacillus acidophilus CSG and Bifidobacterium longum HY8001), which inhibited $\beta$-glucuronidase productivity of intestinal microflora, on t-BHP- or CCl$_4$-induced hepatotoxicity of mice were evaluated. These oral administration of lactic acid bacteria lowered $\beta$-glucuronidase production of intestinal microflora as well as Escherichia coli HGU-3. When lactic acid bacteria at a dose of 0.5 or 2 g (wet weight)/kg was orally administered on CCl$_4$-induced liver injury in mice, these bacteria significantly inhibited the increase of plasma alanine transferase and aspartate transferase activities by $17-57\%$ and $57-66\%$ of the $CCI_4$ control group, respectively. These lactic acid bacteria also showed the potent hepatoprotective effect against t-BHP-induced liver injury in mice. The inhibitory effects of these lactic acid bacteria were more potent than that of dimethyl diphenyl bicarboxylate (DDB), which have been used as a commercial hepatoprotective agent. Among these lactic acid bacteria, L. acidophilus CSG exhibited the most potent hepatoprotective effect. Based on these findings, we insist that an inhibitor of $\beta$-glucuronidase production in intestine, such as lactic acid bacteria, may be hepatoprotective.

The Functions of Lactic Acid Bacteria in Colon Cancer Prevention (결장암 예방에 대한 유산균의 기능)

  • Jeon, Woo-Min
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.55-58
    • /
    • 2011
  • Certain lactic acid bacteria have anti-tumor activity, especially colon cancer. The fermented milk products containing that kind of lactic acid bacteria have to be recommended for human health as excellent health functional foods. This paper have been classified by 5 regions on the functions of lactic acid bacteria related to prevention of colon cancer. 1) Enhancing of host's immune response; Production of cytokines. 2) Binding and degradation of potential carcinogens; Binding and degradation of mutagenicity. 3) The changes of intestinal microflora and production of antitumorigenic or antimutagenic compounds; Production of azoxymethane. 4) Alteration of the metabolic activity of intestinal microflora; Decrease of harmful enzymes in intestinal tract. 5) Alteration of physicochemical conditions in the colon; Decrease of pH and bile acids contents.

  • PDF

Inhibitory effects of Kimchi lactic acid bacteria on harmful enzymes of human intestinal bacteria

  • Han, Seung-Bae;Kim, Dong-Hyun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.226.3-227
    • /
    • 2003
  • Lactic acid bacteria have been considered as the most beneficial probiotic organisms contributing to inhibition of harmful and putrefactive intestinal bacteria. Among them, Bifidobacterium spp. has been considered as one of the most beneficial probiotic organism that can improve the health of humans, since it is one of the major bacteria flora in human intestine. However, the harmful enzyme-inhibitory activity of lactic acid bacteria of Kimchi, which is a representative Korean fermented food has not been evaluated. (omitted)

  • PDF

Rapid Detection of Growth factors of intestinal Lactic Acid Bacteria (장내유산균 증식인자의 신속한 검색)

  • 한명주;임혜영;김동현
    • Journal of Food Hygiene and Safety
    • /
    • v.8 no.2
    • /
    • pp.91-95
    • /
    • 1993
  • The growth of Bifidobacterium and Lactobacillus isolated from human interstinal bacteria were induced by water extract and U-step extract of soybean and carrot and the pH of these bacteria-cultured media were decreased. The increasing growth rates of these bacteria are related to the decrease of the pH of these bacteria-cultured media. When human intestinal flora as starter were inoculated into the medium containing water extract of soybean and carrot. the growth of lactic bacteria were also induced and the pH of the media were decreased. By measuring the pH of the media which were inoculated and cultured intestinal bacteria as a starter, it is possible to determine whether the food are the growth factors of intestinal lactic acid bacteria or not. By this method, the food which decreased pH of the medium were soybean, turnip, carrot. leek, garic, dropwork, wonnwood and onion. 'These foods may induce lactic acid bacteria in human in1estlne.

  • PDF

A Study on the Physiological Activity and Industrial Prospects of Plant-origin Lactic Acid Bacteria (식물 유산균의 생리활성작용과 시장현황 및 전망)

  • Cho, Young-Hoon;Park, Seok-Nam;Jeong, Seung-Hwan
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.53-57
    • /
    • 2009
  • Lactic acid bacteria (LAB) Play an important role in the human diet and are used in the production of edible fermented products such as kimchi and yoghurt. LAB are regarded as safe food additives used to enhance the nutritive value of foods. Plant-origin lactic acid bacteria (PLAB) cultured in vegetal media are now widely used in food industries. PLAB have been found to activate intestinal immunity, modulate the balance of the intestinal bacterial from, and enhance intestinal function. They are known for their strong resistance to acid; this enables them to persist for a longer duration in the human intestine. PLAB can also survive in the intestinal environment under conditions of poor nutrition. They have stronger vitality as compared to LAB of animal origin. Due to the unique characteristics of PLAB, they are being widely used in Japan for processing foods such as yoghurt and beverages. Recently, PLAB has also been used as the culture for processing yoghurt in Korea. We expect further research on the functional effects of PLAB.

  • PDF

Effect of Mushrooms on the Growth of Intestinal Lactic Acid Bacteria (버섯의 장내 유산균 증식 효과)

  • Han, M.J.;Bae, E.A.;Rhee, Y.K.;Kim, D.H.
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.947-952
    • /
    • 1996
  • The objective of this study was to evaluate the effect of mushrooms on the growth of intestinal lactic acid bacteria. Bifidobacterium breve and the total intestinal flora of human and rats were inoculated in the general anaerobic medium which contained each mushroom water extract. Except Pleurotus ostreatus and Flammulina velutipes, the mushroom extracts induced the growth of lactic acid bacteria by decreasing pH of the broth. The pH decreasing effect was excellent especially with Lentinus edodes, Agarocus bisporus and Coriorus versicolor. This effect was due to the increase in the number of Bifidobacterium in the intestinal bacterid. This growth of lactic acid bacteria effectively inhibited the bacterial enzymes, ${\beta}-glucosidase,\;{\beta}-glucuronidase$ and tryptophanase, of intestinal bactetria.

  • PDF

Inhibition of Intestinal Bacterial Enzymes by Lactic Acid Bacteria (유산균에 의한 장내미생물효소의 저해)

  • 김동현;한명주
    • YAKHAK HOEJI
    • /
    • v.39 no.2
    • /
    • pp.169-174
    • /
    • 1995
  • By coculturing E. coli HGU-3 with Bifidobacterium KH-2 or Streptococcus faecalis HGO-7 with Bifidobacterium KH-2, the productivity of $\beta$-glucuronidase and $\beta$-glucosidase was inhibited. When lactulose, growth factor of lactic acid bacteria, was added into this medium, the productivity of these enzymes and pH of the medium were dramatically decreased. When intestinal microflora of human and rat were inoculated in the medium containing lactulose, the enyzme productivity and pH of the medium were dramatically decreased. By s.c. injecting DMH into mice, $\beta$-glucuronidase of intestinal bacteria was induced, but the production of the enzymes was inhibited by adminstering lactulose.

  • PDF

Transformation of Ginsenosides to Compound K(IH-901) by Lactic Acid Bacteria of Human Intestine

  • Bae, Eun-Ah;Kim, Na-Young;Han, Myung-Joo;Choo, Min-Kyung;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2003
  • When ginsenosides Rbl, Rb2, and Rc were anaerobically incubated with commercial and human intestinal lactic acid bacteria, most commercial lactic acid bacteria did not metabolize these ginsenosides to compound K. However, lactic acid bacteria, B. minimum KK-1, Bifidobacterium cholerium KK-2, and B. cuniculi K-513, isolated from human intestinal microflora transformed these ginsensosides to compound K. When the bacterial mixtures of commercial lactic acid bacteria were incubated with these ginsenosides, these compounds were not transfformed to compound K. However, when Bzfidobacterium KK-1 and KX-2 were miked, these ginsenosides were synergistically transformed to compound K. When water extract of ginseng was incubated with these mixed bifidobacteria, compound K was potently produced. Therefore, it is suggested that, if ginseng with these mixed bifidobacteria is fermented, compound K-enforced ginseng materials could be produced that show cytotoxicity against tumor cell lines.

Effects of lactic acid bacteria fermented feed and three types of lactic acid bacteria (L. plantarum, L. acidophilus, B. animalis) on intestinal microbiota and T cell polarization (Th1, Th2, Th17, Treg) in the intestinal lymph nodes and spleens of rats

  • Da Yoon, Yu;Sang-Hyon, Oh;In Sung, Kim;Gwang Il, Kim;Jeong A, Kim;Yang Soo, Moon;Jae Cheol, Jang;Sang Suk, Lee;Jong Hyun, Jung;Hwa Chun, Park;Kwang Keun, Cho
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.156-166
    • /
    • 2023
  • Objective: In this study, we investigated the effects of Rubus coreanus-derived lactic acid bacteria (LAB) fermented feed (RC-LAB fermented feed) and three types of LAB (Lactobacillus plantarum, Lactobacillus acidophilus, Bifidobacterium animalis) on the expression of transcription factors and cytokines in Th1, Th2, Th17, and Treg cells in the intestinal lymph nodes and spleens of rats. In addition, the effect on intestinal microbiota composition and body weight was investigated. Methods: Five-week-old male rats were assigned to five treatments and eight replicates. The expression of transcription factors and cytokines of Th1, Th2, Th17, and Treg cells in the intestinal lymph nodes and spleens was analyzed using real-time reverse transcriptase polymerase chain reaction assays. Intestinal tract microbiota compositions were analyzed by next-generation sequencing and quantitative polymerase chain reaction assays. Results: RC-LAB fermented feed and three types of LAB increased the expression of transcription factors and cytokines in Th1, Treg cells and Galectin-9, but decreased in Th2 and Th17 cells. In addition, the intestinal microbiota composition changed, the body weight and Firmicutes to Bacteroidetes (F/B) ratio decreased, and the relative abundance of LAB increased. Conclusion: LAB fermented feed and three types of LAB showed an immune modulation effect by inducing T cell polarization and increased LAB in the intestinal microbiota.