• Title/Summary/Keyword: intestinal cell

Search Result 638, Processing Time 0.024 seconds

Intestinal Lymphoma in a Halla Horse

  • Jeong, Hyohoon;Lee, Seyoung;Park, Kyung-won;Lee, Eun-bee;Kim, Jae-Hoon;Jung, Ji-Youl;Seo, Jong-pil
    • Journal of Veterinary Clinics
    • /
    • v.39 no.3
    • /
    • pp.138-143
    • /
    • 2022
  • A 21-year-old female Halla Horse weighing 248 kg was referred to the Jeju National University Equine Hospital with the chief complaint of anorexia accompanied by general weakness and depression for the previous three days suspected to be related to colic. Extensive diagnostic tests were performed for the following six days, including complete blood count (CBC), serum chemistry, gastroscopy, x-rays, and ultrasound imaging. The signalment, history, symptoms, and test results strongly suggested a chronic intestinal inflammatory disease with or without an alimentary tumor; hence, an exploratory laparotomy was performed. Almost the entire small intestine wall was severely thickened with diffuse ecchymosis on the serosa and protruded nodules on the mucosa. A presumptive diagnosis of an intestinal tumor was made, and the patient was euthanized, considering the patient's welfare with poor prognosis and low expectancy. A massive part of the small intestine was collected and submitted for macroscopic and microscopic pathology evaluations. The pathologic examination, including immunohistochemistry (IHC), indicated equine intestinal lymphoma showing strong positivity for T cell marker. This report describes the clinical signs, diagnosis and pathological features of intestinal lymphoma in a Halla Horse in detail.

Effect of Ovariectomy Induced Hyperphagia on the Intestinal Adaptation (난소절제에 의해 유발된 과식현상이 소장적응변화에 미치는 영향)

  • 윤정한
    • Journal of Nutrition and Health
    • /
    • v.21 no.3
    • /
    • pp.182-187
    • /
    • 1988
  • Ovariectomy induced hyperphagia was reported in various animal models. It was postulated that hyperphagia resulted in interstinal hypertrophy and hyperplasia. Therefore, this study was performed to compare the food intake and intestinal changes between ovariectomized rats(OVX) and sham operated rats(Sham). Results of this study showed that the food intake and body weight of OVX animal was significantly higher than those of Sham animal. This results confirmed the effect of ovarian hormone on the food intake regulation. Hyperphagia induced by ovariectomy influence the intestinal cell growth and showed hyperplasia determined by protein/DNA ratio. Maltase and alkaline phosphatase activity suggested that the intestinal cell was fully matured in body groups. There were no difference in weight of other organs, such as liver, heart and kindney between two groups.

  • PDF

High-fat Diet Accelerates Intestinal Tumorigenesis Through Disrupting Intestinal Cell Membrane Integrity

  • Park, Mi-Young;Kim, Min Young;Seo, Young Rok;Kim, Jong-Sang;Sung, Mi-Kyung
    • Journal of Cancer Prevention
    • /
    • v.21 no.2
    • /
    • pp.95-103
    • /
    • 2016
  • Background: Excess energy supply induces chronic low-grade inflammation in association with oxidative stress in various tissues including intestinal epithelium. The objective of this study was to investigate the effect of high-fat diet (HFD) on intestinal cell membrane integrity and intestinal tumorigenesis in $Apc^{Min/+}$ mice. Methods: Mice were fed with either normal diet (ND) or HFD for 12 weeks. The number of intestinal tumors were counted and biomarkers of endotoxemia, oxidative stress, and inflammation were determined. Changes in intestinal integrity was measured by fluorescein isothiocyanate (FITC)-dextran penetration and membrane gap junction protein expression. Results: HFD group had significantly higher number of tumors compared to ND group (P < 0.05). Blood total antioxidant capacity was lower in HFD group, while colonic 8-hydroxy-2'-deoxyguanosine level, a marker of oxidative damage, was higher in HFD group compared to that of ND group (P < 0.05). The penetration of FITC-dextran was substantially increased in HFD group (P < 0.05) while the expressions of membrane gap junction proteins including zonula occludens-1, claudin-1, and occludin were lower in HFD group (P < 0.05) compared to those in ND group. Serum concentration of lipopolysaccharide (LPS) receptor (CD14) and colonic toll-like receptor 4 (a LPS receptor) mRNA expression were significantly higher in HFD group than in ND group (P < 0.05), suggesting that significant endotoxemia may occur in HFD group due to the increased membrane permeability. Serum interleukin-6 concentration and myeloperoxidase activity were also higher in HFD group compared to those of ND group (P < 0.05). Conclusions: HFD increases oxidative stress disrupting intestinal gap junction proteins, thereby accelerating membrane permeability endotoxemia, inflammation, and intestinal tumorigenesis.

Sepsis induces variation of intestinal barrier function in different phase through nuclear factor kappa B signaling

  • Cao, Ying-Ya;Wang, Zhong-Han;Xu, Qian-Cheng;Chen, Qun;Wang, Zhen;Lu, Wei-Hua
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.375-383
    • /
    • 2021
  • The intestinal barrier function disrupted in sepsis, while little is known about the variation in different phases of sepsis. In this study, mouse models of sepsis were established by caecal ligation and puncture (CLP). The H&E staining of sections and serum diamine oxidase concentration were evaluated at different timepoint after CLP. TUNEL assay and EdU staining were performed to evaluate the apoptosis and proliferation of intestinal epithelium. Relative protein expression was assessed by Western blotting and serum concentrations of pro-inflammatory cytokines was measured by ELISA. The disruption of intestinal barrier worsened in the first 24 h after the onset of sepsis and gradually recovered over the next 24 h. The percentage of apoptotic cell increased in the first 24 h and dropped at 48 h, accompanied with the proliferative rate of intestinal epithelium inhibited in the first 6 h and regained in the later period. Furthermore, the activity of nuclear factor kappa B (NF-κB) presented similar trend with the intestinal barrier function, shared positive correction with apoptosis of intestinal epithelium. These findings reveal the conversion process of intestinal barrier function in sepsis and this process is closely correlated with the activity of NF-κB signaling.

Understanding intestinal health in nursery pigs and the relevant nutritional strategies

  • Kim, Sung Woo;Duarte, Marcos E.
    • Animal Bioscience
    • /
    • v.34 no.3_spc
    • /
    • pp.338-344
    • /
    • 2021
  • In the modern pig production, pigs are weaned at early age with immature intestine. Dietary and environmental factors challenge the intestine, specifically the jejunum, causing inflammation and oxidative stress followed by destruction of epithelial barrier and villus structures in the jejunum. Crypt cell proliferation increases to repair damages in the jejunum. Challenges to maintain the intestinal health have been shown to be related to changes in the profile of mucosa-associated microbiota in the jejunum of nursery pigs. All these processes can be quantified as biomarkers to determine status of intestinal health related to growth potential of nursery pigs. Nursery pigs with impaired intestinal health show reduced ability of nutrient digestion and thus reduced growth. A tremendous amount of research effort has been made to determine nutritional strategies to maintain or improve intestinal health and microbiota in nursery pigs. A large number of feed additives have been evaluated for their effectiveness on improving intestinal health and balancing intestinal microbiota in nursery pigs. Selected prebiotics, probiotics, postbiotics, and other bioactive compounds can be used in feeds to handle issues with intestinal health. Selection of these feed additives should aim modulating biomarkers indicating intestinal health. This review aims to define intestinal health and introduce examples of nutritional approaches to handle intestinal health in nursery pigs.

Stimulation of Platelet-Activating Factor (PAF) Synthesis in Human Intestinal Epithelial Cell Line by Aerolysin from Aeromonas encheleia

  • Nam In-Young;Cho Jae-Chang;Myung Hee-Joon;Joh Ki-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1292-1300
    • /
    • 2006
  • Aeromonas encheleia, a potential human intestinal pathogen, was shown to infect a human intestinal epithelial cell line (Caco-2) in a noninvasive manner. The transcriptional profile of the Caco-2 cells after infection with the bacteria revealed an upregulated expression of genes involved in chloride secretion, including that of phospholipase A2 (PLA2) and platelet-activating factor (PAF) acetylhydrolase (PAFAH2). This was also confirmed by a real-time RT-PCR analysis. As expected from PLA2 induction, PAF was produced when the Caco-2 cells were infected with the bacteria, and PAF was also produced when the cells were treated with a bacterial culture supernatant including bacterial extracellular proteins, yet lacking lipopolysaccharides. Bacterial aerolysin was shown to induce the production of PAF.

Inhibition of Escherichia coli O157:H7 Attachment by Interactions Between Lactic Acid Bacteria and Intestinal Epithelial Cells

  • Kim, Young-Hoon;Kim, Sae-Hun;Whang, Kwang-Youn;Kim, Young-Jun;Oh, Se-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1278-1285
    • /
    • 2008
  • The intestinal epithelial cell (IEC) layer of the intestinal tract makes direct contact with a number of microbiota communities, including bacteria known to have deleterious health effects. IECs possess innate protective strategies against pathogenic challenge, which primarily involve the formation of a physicochemical barrier. Intestinal tract mucins are principal components of the mucus layer on epithelial surfaces, and perform a protective function against microbial damage. However, little is currently known regarding the interactions between probiotics/pathogens and epithelial cell mucins. The principal objective of this study was to determine the effects of Lactobacillus on the upregulation of MUC2 mucin and the subsequent inhibition of E. coli O157:H7 attachment to epithelial cells. In the current study, the attachment of E. coli O157:H7 to HT-29 intestinal epithelial cells was inhibited significantly by L. acidophilus A4 and its cell extracts. It is also important to note that the expression of MUC2 mucin was increased as the result of the addition of L. acidophilus A4 cell extracts (10.0 mg/ml), which also induced a significant reduction in the degree to which E. coli O157:H7 attached to epithelial cells. In addition, the mRNA levels of IL-8, IL-1$\beta$, and TNF-$\alpha$ in HT-29 cells were significantly induced by treatment with L. acidophilus A4 extracts. These results indicate that MUC2 mucin and cytokines are important regulatory factors in the immune systems of the gut, and that selected lactobacilli may be able to induce the upregulation of MUC2 mucin and specific cytokines, thereby inhibiting the attachment of E. coli O157:H7.

Phosphorylation of tyrosine-14 on Caveolin-1 enhances lipopolysaccharide-induced inflammation in human intestinal Caco-2 cells

  • Gong Deuk Bae;Kyong Kim;Se-Eun Jang;Dong-Jae Baek;Eun-Young Park;Yoon Sin Oh
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.311-319
    • /
    • 2023
  • Caveolin-1 (Cav-1) is the main structural component of the caveolae on the plasma membrane, which regulates various cellular processes, including cell growth, differentiation, and endocytosis. Although a recent study demonstrated that Cav-1 might be involved in diabetes-associated inflammation, its exact role in the intestine was unclear. In this study, we examined the intestinal expression of Cav-1 in diabetic conditions. We also investigated its effect on lipopolysaccharide (LPS)-induced inflammation by expressing this protein in human intestinal Caco-2 cells lacking Cav-1. We observed that increased Cav-1 levels and decreased expression of tight junction proteins affected intestinal permeability in high-fat diet-induced diabetic mice. When Caco-2 cells were treated with LPS, Cav-1 enhanced the NF-κB signaling. Moreover, LPS reduced the expression of tight junction proteins while it increased cell-cell permeability and reactive oxygen species generation in Caco-2 cells and this effect was amplified by cav-1 overexpression. LPS treatment promoted phosphorylation of tyrosine-14 (Y14) on Cav-1, and the LPS-induced NF-κB signaling was suppressed in cells expressing non-phosphorylatable Cav-1 (tyrosine-14 to phenylalanine mutant), which reduced intestinal barrier permeability. These results suggest that Cav-1 expression promotes LPS-induced inflammation in Caco-2 cells, and phosphorylation of Y14 on Cav-1 might contribute to the anti-inflammatory response in LPS-induced NF-κB signaling and cell permeability.

Therapeutic Effects of Resiniferatoxin Related with Immunological Responses for Intestinal Inflammation in Trichinellosis

  • Munoz-Carrillo, Jose Luis;Munoz-Lopez, Jose Luis;Munoz-Escobedo, Jose Jesus;Maldonado-Tapia, Claudia;Gutierrez-Coronado, Oscar;Contreras-Cordero, Juan Francisco;Moreno-Garcia, Maria Alejandra
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.6
    • /
    • pp.587-599
    • /
    • 2017
  • The immune response against Trichinella spiralis at the intestinal level depends on the $CD4^+$ T cells, which can both suppress or promote the inflammatory response through the synthesis of diverse cytokines. During the intestinal phase, the immune response is mixed (Th1/Th2) with the initial predominance of the Th1 response and the subsequent domination of Th2 response, which favor the development of intestinal pathology. In this context, the glucocorticoids (GC) are the pharmacotherapy for the intestinal inflammatory response in trichinellosis. However, its therapeutic use is limited, since studies have shown that treatment with GC suppresses the host immune system, favoring T. spiralis infection. In the search for novel pharmacological strategies that inhibit the Th1 immune response (proinflammatory) and assist the host against T. spiralis infection, recent studies showed that resiniferatoxin (RTX) had anti-inflammatory activity, which decreased the serum levels of IL-12, $INF-{\gamma}$, $IL-1{\beta}$, $TNF-{\alpha}$, NO, and $PGE_2$, as well the number of eosinophils in the blood, associated with decreased intestinal pathology and muscle parasite burden. These researches demonstrate that RTX is capable to inhibit the production of Th1 cytokines, contributing to the defense against T. spiralis infection, which places it as a new potential drug modulator of the immune response.

Scientific Analysis of the Formulation Theory of Chungpesagan-tang; In Vitro Cytotoxicity of Chungpesagan-tang

  • Kim, Jin-Don;Bae, Hyung-Sup;Joh, Ki-Ho;Kim, Young-Suk;Lee, Kyung-Sup;Park, Eun-Kyung;Bae, Eun-Ah;Kim, Dong-Hyun
    • Natural Product Sciences
    • /
    • v.6 no.1
    • /
    • pp.25-30
    • /
    • 2000
  • To analyse scientifically the fundamental formulation theory and drug interaction of Chungpegagan-tang, the extraction level of puerarin and daidzin, the transforming activity of puerarin and daidzin to daidzein by human intestinal bacteria and in vitro cytotoxicity against tumor cell lines of Chungpesagan-tang were investigated. When Puerariae Radix was extracted with Chungpesagan-tang composing herbal medicines, the puerarin extraction level from these polyprescriptions was decreased by the extraction with Raphani Semen or Cimicifugae Rhizoma, but the other herbal medicines increased it. The activity transforming puerarin and daidzin to daidzein by human intestinal bacteria was increased by Raphani Semen, Cimicifugae Rhizoma and Angelicae Tenuissimae Radix, but decreased by Scutellariae Radix and Rhei Rhizoma. Puerariae Radix did not showed in vitro cytotoxicity against tumor cell lines. However, by its anaerobic incubation with human intestinal bacteria, it showed a potent cytotoxicity. When the main components, puerarin and daidzin, of Puerariae Radix were incubated with human intestinal bacteria, the main metabolites were daidzein and calycosin. These metabolites had the most potent cytotoxicity, compared to those of puerarin and daidzin. Raphani Semen, Rhei Rhizoma and Chungpesagan-tang had also the potent cytotoxicity against tumor cell lines by the anaerobic incubation with human intestinal bacteria.

  • PDF