• Title/Summary/Keyword: interval load

Search Result 284, Processing Time 0.022 seconds

Viral Load Dynamics After Symptomatic COVID-19 in Children With Underlying Malignancies During the Omicron Wave

  • Ye Ji Kim;Hyun Mi Kang;In Young Yoo;Jae Won Yoo;Seong Koo Kim;Jae Wook Lee;Dong Gun Lee;Nack-Gyun Chung;Yeon-Joon Park;Dae Chul Jeong;Bin Cho
    • Pediatric Infection and Vaccine
    • /
    • v.30 no.2
    • /
    • pp.73-83
    • /
    • 2023
  • Purpose: This study aimed to investigate the viral load dynamics in children with underlying malignancies diagnosed with symptomatic coronavirus disease 2019 (COVID-19). Methods: This was a retrospective longitudinal cohort study of patients <19 years old with underlying hemato-oncologic malignancies that were diagnosed with their first symptomatic severe acute respiratory syndrome coronavirus 2 polymerase chain reaction (PCR)-confirmed COVID-19 infection during March 1 to August 30, 2022. Review of electronic medical records and telephone surveys were undertaken to assess the clinical presentations and transmission route of the patients. Thresholds of negligible likelihood of infectious virus was defined as E gene reverse transcription (RT)-PCR cycle threshold (Ct) value ≥25. Results: During the 6-month study period, a total of 43 children with 44 episodes of COVID-19 were included. Of the 44 episodes, the median age of the patients included was 8 years old (interquartile range [IQR], 4.9-10.5), and the most common underlying disease was acute lymphoid leukemia (n=30, 68.2%), followed by patients post-hematopoietic stem cell transplantation (n=8, 18.2%). Majority of the patients had mild COVID-19 (n=32, 72.7%), and three patients (7.0%) had severe/critical COVID-19. Furthermore, 2.3% (n=1) died of COVID-19 associated acute respiratory distress syndrome. The largest percentage of the patients showed E gene RT-PCR Ct value ≥25 between 15-21 days (n=13, 39.4%), followed by 22-28 days (n=10, 30.3%). In 15.2% (n=5), E gene RT-PCR Ct value remained <25 beyond 28 days after initial positive PCR. Refractory malignancy status (β, 67.0; 95% confidence interval, 7.0-17.0; P=0.030) was significantly associated with prolonged duration of E gene RT-PCR <25. A patient with prolonged duration of E gene RT-PCR Ct value <25 was suspected to have infectivity shown by the transmission of the virus to his mother at day 86 after his initial positive test. Conclusions: Children that acquire symptomatic COVID-19 during refractory malignancy state are at a high risk for prolonged shedding warranting PCR-based transmission precautions in this cohort of patients.

Effects of PTO gear face width on safety factors

  • Jang, Jeong-Hoon;Chung, Sun-Ok;Choi, Chang-Hyun;Park, Young-Jun;Chun, Won-Ki;Kim, Seon-Il;Kwon, Oh-Won;Kim, Chang-Won;Hong, Soon-Jung;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.650-655
    • /
    • 2016
  • Gears are components of transmission which transmit the power of an engine to a machine and offer numerous speed ratios, a compact structure, and high efficiency of power transmission. Gear train design in the automotive industry uses simulation software. However, PTO (Power Take-Off) gear design for agricultural applications uses the empirical method because of the wide range of load fluctuations in agricultural fields. The PTO is an important part of agricultural tractors which transmits the power to various tractor implements. Therefore, a simulation was essential to the optimal design of the PTO. When the PTO gear is optimally designed, there are many advantages such as low cost, reduced size, and light weight. In this study, we conducted the bending and contact safety factor simulation for the PTO gear of an agricultural tractor. The bending and contact safety factors were calculated on ISO 6336 : 2006 by decreasing the face widths of the PTO pinion and wheel gear from 18 mm at an interval of 1 mm. The safety factor of the PTO gear decreased as the face width decreased. The contact safety factors of the pinion and wheel gear were 1.45 and 1.53, respectively, when the face width was 18 mm. The simulation results showed that the face width of the PTO gear should be greater than 9 mm to maintain the bending and contact safety factors higher than 1. It would be possible to reduce the weight of the PTO gear for different uses and working conditions. This study suggests that the possibility of designing an optimal PTO gear decreases as its face width decreases.

A Study on Prediction of Nugget Diameter by Resistance Spot Welding Finite Element Analysis of High Tensile Steel (SGAFC 780) (고장력 강판(SGAFC780)의 저항 점 용접의 유한요소해석을 통한 너깃 직경 예측)

  • Lee, Cheal-Ho;Kim, Won Seop;Lee, Jong-Hun;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.144-150
    • /
    • 2019
  • In this study, resistance spot welding was performed using a high tensile steel plate SGAFC 780. The shear tensile strength, fracture profile, nugget diameter, and simulation were compared according to the conditions. After the nugget diameter calibration, the minimum diameter of welding was more than 4.3mm when the welding current was 8kVA or more. At 9kVA and above 10kVA, the minimum nugget diameter of 4.3mm was satisfied. On the other hand, due to the high current and time, the fly phenomenon occurred and the deep indentation remained. An evaluation of the weldability confirmed that there was an interval that was evaluated as weld failure due to the creep phenomenon, which satisfied the tensile shear strength and minimum nugget diameter. On the other hand, areas that have sufficient load bearing capacity even when drift has occurred were also identified. The simulation results show that the error rate was less than 4.2% when comparing the nugget diameter in the simulation and the experimental results in the appropriate weld zone, and confirmed the reliability of the simulation.

Joint Displacement Resistance Evaluation of Waterproofing Material in Railroad Bridge Deck (철도교량상판 방수재료 선정을 위한 균열거동저항 성능평가)

  • Bae, Young-Min;Oh, Dong-Cheon;Park, Yong-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.683-692
    • /
    • 2020
  • A joint displacement resistance evaluation method for selecting waterproofing materials in railway bridge decks is proposed. The displacement range for an evaluation is determined by finite element method (FEM) analysis of a load case based on an existing high-speed PSC Girder Box railroad bridge structure. The FEM analysis results were used to calculate the minimum joint displacement range to be applied during testing (approximately 1.5 mm). For the evaluation, four commonly used waterproofing membrane types, cementitious slurry coating (CSC), polyurethane coating system (PCS), self-adhesive asphalt sheet (SAS), and composite asphalt sheet (CAS), were tested, with five specimens of each membrane type. The joint displacement width range conditions, including the minimum displacement range obtained from FEM analysis, were set to be the incrementing interval, from 1.5, 3.0, 4.5, and 6.0 mm. The proposal for the evaluation criteria and the specimen test results demonstrated how the evaluation method is important for the sustainability of high-speed railway bridges.

3D Finite Element Analysis of High Tension Bolted Joints (고장력 볼트 이음부의 3차원 유한요소 해석)

  • Shim, Jae Soo;Kim, Chun Ho;Kim, Dong Jo
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.407-414
    • /
    • 2004
  • Bridges in common use are expected to have more varieties of load in their connected members and bolts than in construction. Faults in connection members or bolts occur so often according to the time flow. One of the purposes of this study is to find out the behavior and structural features of high-tension bolted joints with faults that are very difficult and cost much to find out through experimentation with finite element analysis. Another purpose of this study is to provide sufficient data, estimated experimental results, and the scheme of the test plate for an economical experimental study in the future. Surveys of bridges with a variety of faults and statistical classifications of their faults were performed, as was a finite element analysis of the internal stress and the sliding behavior of standard and defective bridge models. The finite element analysis of the internal stress was performed according to the interval of the bolt, the thickness of the plate, the distance of the edge, the diameter of the bolt, and the expansion of the construction. Furthermore, the analysis explained the sliding behavior of high-tension bolt joints and showed the geometric non-linear against the large deformation, and the boundary non-linear against the non-linear in the contact surface, including the material non-linear, to best explain the exceeding of the yield stress by sliding. A normally bolted high-tension bolt joint and deduction of bolt tension were also analyzed with the finite element analysis of bridge-sliding behavior.

Comparison of Relative Thickness of the Iliotibial Band Following Four Self-Stretching Exercises

  • Kim, Hyun-Sook;Yoon, Tae-Lim
    • Physical Therapy Korea
    • /
    • v.19 no.4
    • /
    • pp.24-31
    • /
    • 2012
  • The aim of this study was to investigate the effectiveness of self-stretching exercises for iliotibial band (ITB) (Side-lying; right hip and knee were flexed to support the pelvis while left hip was extended and adducted, Standing A; side-bending of the trunk on standing with crossed leg, Standing B; same as Standing A, except the hands were clasped overhead and shifted right side, and Standing C; same as Standing B, except moving the arms diagonally downward) to help determine the most effective self-stretching method to stretch ITB. Twenty-one healthy subjects who do not have ITB shortness from Yonsei University (14 men and 7 women) between the ages of 18 to 28 years voluntarily participated. Ultrasound was performed to measure the thickness of the ITB between the long axis of the ITB and the level parallel to the lateral femoral epicondyle during four self-stretching exercises. All data were found to approximate a normal distribution. We used a one-way repeated-measures analysis of variance (ANOVA) to compare the thickness of the ITB among all self-stretching exercises. The level of significance was set at ${\alpha}$=.05. The ANOVA was followed by Bonferroni's correction. The overall mean of ITB thickness was $1.14{\pm}.4$ mm (${\pm}$ standard deviation) in resting status. The change in the ITB thickness in percentages between the tested position of each self-stretching exercises and resting status was significant (p<.05) (Side-lying $26.62{\pm}10.18%$ with 95% confidence interval [CI]=21.99~31.25%; Standing A $29.46{\pm}16.19%$ with 95% CI=22.09~36.84%; Standing B $44.06{\pm}14.82%$ with 95% CI=37.31~50.81%; Standing C $53.76{\pm}12.1%$ with 95% CI=48.25~59.29%). Results indicated significant differences among four self-stretching exercises except Side-lying versus Standing A (p<.01). Based on these findings, the Standing C self-stretching exercise was the most effective in stretching the ITB thickness among four types of ITB self-stretching exercises. Additionally, the Side-lying self-stretching exercise using gravity to stretch the ITB is recommended as a low-load (low-intensity), long-duration stretch.

Ductility Evaluation of Heavyweight Concrete Shear Walls with Wire Ropes as a Lateral Reinforcement (와이어로프로 횡보강된 고중량콘크리트 전단벽의 연성평가)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.207-214
    • /
    • 2015
  • This study examined the feasibility of wire ropes as lateral reinforcement at the boundary element of heavyweight concrete shear walls. The spacing of the wire ropes varied from 60 mm to 120 mm at an interval of 30 mm, which produces the volumetric index of the lateral reinforcement of 0.126~0.234. The wire ropes were applied as a external hoop and/or internal cross-tie. Five shear wall specimens were tested to failure under constant axial load and cyclic lateral loads. Test results showed that with the increase of the volumetric index of the lateral reinforcement, the ductility of shear walls tended to increase, whereas the variation of flexural capacity of walls was minimal. The flexural capacity of shear walls tested was slightly higher than predictions determined from ACI 318-11 procedure. The displacement ductility ratio of shear walls with wire ropes was higher than that of shear wall with the conventional mild bar at the same the volumetric index of the lateral reinforcement. In particular, the shear walls with wire rope index of 0.233 achieved the curvature ductility ratio of more than 16 required for high-ductility design.

An Experimental Study on the Shear Behavior of Reinforced Concrete Beams Strengthened by Slit Type Steel Plates with Anchor Bolt (앵커볼트 체결 Slit형 강판 보강 RC보의 전단거동에 관한 실험적 연구)

  • Lee, Choon-Ho;Jeong, Woo-Dong;Shim, Jong-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.703-710
    • /
    • 2010
  • Reinforced concrete beams of existing structure often encounter insufficient shear problems for various reasons. Application of steel plates is one of widely used methods for shear strengthening of reinforced concrete beams that are insufficient of shear capacity. This study presents test results on strengthening shear deficient RC beams by external bonding of vertical and diagonal slit type steel plates with anchor bolt. Test parameters are width, interval, angle and length of slits with anchor bolt. The purpose was to evaluate the failure modes and shear capacities for RC beams strengthened by various slit type steel plates with anchor bolt. The results showed that the slit type steel plate specimens strengthened by adhesive bonding and bolting failed in shear fracture modes at maximum load. Flexural crack first occurred on the tension face of beam and then inclined cracks occurred on the shear span. Finally, slit type steel plates strengthened by adhesive bonding and fastening bolts managed to delay abrupt debonding and didn't detach fully from main body of RC beam.

Development of Solenoid RF Coil for Animal Imaging in 3T High Magnetic Field MRI (고자장 3T MRI 장비에서 동물영상을 위한 솔레노이드 RF코일 개발)

  • Lee, Hong-Seok;Woo, Dong-Cheol;Min, Kwang-Hong;Kim, Yong-Kwon;Lee, Heung-Kyu;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.1
    • /
    • pp.20-26
    • /
    • 2007
  • Purpose : The purpose of the present study was to develop and optimize solenoid coil for animal- model in 3 T MRI system and investigate and compare with the birdcage coil concerning the image quality with the various parameters such as SNR and Q-factor. Materials and Methods : Solenoid coil for animal-model was made on the acryl structure (diameter 4 cm, length 10 cm) 3 times-winding cooper tape of width 2 cm, thickness 0.05 cm and length 10 cm with 2 cm interval between winded tapes. Capacitors from 2 pF to 100 pF were used, and the solenoid coil was designed for receiver only coil. Results : SNR of the developed solenoid was 985 in CuSO4 0.7 g/L and 995 in rat experiment. Q-factor was 84-89 in unloaded condition and 203-206 in loaded condition. Conclusion : The resolution of the image obtained from solenoid was relatively higher than that of the conventional birdcage coil. In addition, the homogeneity of RF field by coil simulation was significantly excellent. The present study demonstrated that the solenoid coil could be useful to obtain small animal images with better contrast, resolution, visibility than images from birdcage.

  • PDF

Modeling on Rheological Behavior of Cement Paste under Squeeze Flow (압축 유동하에 있는 시멘트 페이스트의 유변학적 거동에 관한 모델링)

  • Min, Byeong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.405-413
    • /
    • 2020
  • The normal stress of cement paste measured under squeeze flow is divided into an elastic solid region at strains between 0.0003 and 0.003 and a strain-hardening region at strains of 0.003 and 0.8. A modeling equation at the strain-hardening region was proposed. First, from the viewpoint of fluid behavior, the power-law non-Newtonian fluid model, with a power-law consistency (m) of 700 and a power index (n) of 0.2, was applied. The results showed good agreement with the experimental results except for an elastic solid region. Second, from the viewpoint of ductile yielding solid behavior, the force balance model was applied, and the friction coefficient between the sensor part measuring the load and the surface of the cement paste was derived as a polynomial of the normal strain by applying the half-interval search method to the experimental data. The results showed good agreement with the experimental results only in the middle normal strain region at strains between 0.003 and 0.3. The rheological behavior of the cement paste under squeeze flow was more consistent with the experimental results from the viewpoint of power-law non-Newtonian fluid behavior than from the viewpoint of ductile yielding solid behavior in the strain-hardening region.