• Title/Summary/Keyword: interval finite element analysis

검색결과 75건 처리시간 0.028초

Dynamic numerical analysis of single-support modular bridge expansion joints

  • Yuan, Xinzhe;Li, Ruiqi;Wang, Jian'guo;Yuan, Wancheng
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.1-12
    • /
    • 2016
  • Severe fatigue and noise problems of modular bridge expansion joints (MBEJs) are often induced by vehicle loads. However, the dynamic characteristics of single-support MBEJs have yet to be further investigated. To better understand the vibration mechanism of single-support MBEJs under vehicle loads, a 3D finite element model of single-support MBEJ with five center beams is built. Successive vehicle loads are given out and the vertical dynamic responses of each center beams are analyzed under the successive loads. Dynamic amplification factors (DAFs) are also calculated along with increasing vehicle velocities from 20 km/h to 120 km/h with an interval 20 km/h. The research reveals the vibration mechanism of the single-support MBEJs considering coupled center beam resonance, which shows that dynamic responses of a given center beam will be influenced by the neighboring center beams due to their rebound after the vehicle wheels depart. Maximal DAF 1.5 appears at 120 km/h on the second center beam. The research results can be utilized for reference in the design, operation and maintenance of single-support MBEJs.

압전발전 모듈의 안정성 해석 및 최적 매립위치 결정 (Stability Analysis of Piezoelectric Module and Determine of Optimal Burying Location)

  • 손인수;김지원;주홍회;조대환
    • 한국산업융합학회 논문집
    • /
    • 제26권1호
    • /
    • pp.193-199
    • /
    • 2023
  • In this study, an analysis was conducted to analyze the structural stability of the piezoelectric power generation module and to determine the optimal burying hole interval for concrete, the installation site of the power generation module. A piezoelectric element refers to a functional ceramic having a piezoelectric direct effect that converts mechanical energy into electrical energy and a piezoelectric reverse effect. In the analysis of the piezoelectric power generation module, the load condition was applied with about 16 tons and a total of 10 wheels in consideration of the container trailer. The purpose was to evaluate the stability of major components of the piezoelectric power generation module through finite element analysis. In order to determine the optimal burying location of the concrete ground for burying the piezoelectric power generation module, the stability of the ground structure according to the distance of the holes was determined. As a result of the analysis, the maximum stress of the piezoelectric power generation module was generated in the support spring, showing a stress of about 276.7 MPa. It was found that the spacing of holes for embedding the piezoelectric power generation module should be set to a minimum of 100 mm or more.

예열온도조건에 따른 알루미늄 합금 주조재의 응고특성에 관한 연구 (A Study on Solidification Characteristics of Aluminum Alloy Casting Material by Pre-heated Temperature Conditions)

  • 윤천한;윤희성;오율권
    • 한국안전학회지
    • /
    • 제27권4호
    • /
    • pp.7-12
    • /
    • 2012
  • In this study, the solidification characteristics inside the AC7A casting material was analyzed using the numerical analysis method and was verified using the experimental method by the pre-heated temperature conditions of metal casting device. For the numerical analysis, "COMSOL Multiphysics", the commercial code based on the finite element analysis(FEA), was used in order to predict the thermal deformation of the AC7A casting material including temperature, displacement and stress distribution. Also, in order to verify the results calculated by the numerical analysis, the experiment for temperature measurement inside the AC7A casting material was performed using the K-type thermocouple under the same condition of numerical analysis method. In the numerical results, thermal deformation inside AC7A casting material was well-suited for manufacturing products when the pre-heated temperatures of the metal casting device was $250^{\circ}C$. When the results of the temperature distribution were experimentally measured and were compared with those of the numerical result, it appeared that there was some temperature difference because of the latent heat by phase change heat transfer. However, the result of cooling temperature and patterns were almost similar except for the latent heat interval. The solidification characteristics was closely related to the temperature difference between the surface and inside of the casting.

Computation of design forces and deflection in skew-curved box-girder bridges

  • Agarwal, Preeti;Pal, Priyaranjan;Mehta, Pradeep Kumar
    • Structural Engineering and Mechanics
    • /
    • 제78권3호
    • /
    • pp.255-267
    • /
    • 2021
  • The analysis of simply supported single-cell skew-curved reinforced concrete (RC) box-girder bridges is carried out using a finite element based CsiBridge software. The behaviour of skew-curved box-girder bridges can not be anticipated simply by superimposing the individual effects of skewness and curvature, so it becomes important to examine the behaviour of such bridges considering the combined effects of skewness and curvature. A comprehensive parametric study is performed wherein the combined influence of the skew and curve angles is considered to determine the maximum bending moment, maximum shear force, maximum torsional moment and maximum vertical deflection of the bridge girders. The skew angle is varied from 0° to 60° at an interval of 10°, and the curve angle is varied from 0° to 60° at an interval of 12°. The scantly available literature on such bridges focuses mainly on the analysis of skew-curved bridges under dead and point loads. But, the effects of actual loadings may be different, thus, it is considered in the present study. It is found that the performance of these bridges having more curvature can be improved by introducing the skewness. Finally, several equations are deduced in the non-dimensional form for estimating the forces and deflection in the girders of simply supported skew-curved RC box-girder bridges, based upon the results of the straight one. The developed equations may be helpful to the designers in proportioning, analysing, and designing such bridges, as the correlation coefficient is about 0.99.

차륜주행충격에 의한 빗살형 교량 신축이음장치 구조물의 과도진동해석 (Transient Response Analysis of a Comb Type Bridge Expansion Joint due to Travelling Wheel Impact)

  • 최영휴;김현욱;안영덕
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.69-74
    • /
    • 1997
  • In this paper we derive relations which describe the geometry and kinematics of contact between the travelling wheel and stepped comb joint. From which we can obtain the impulse, impulsive force and its time interval due to travelling wheel impact which can not be taken from Carter's model or Newland and Cassidy's. The calculated transient responses of the comb joint structure to travelling wheel impact reveals that the proposed wheel contact model and Carter's give very similar results but Newland Cassidy's model make a quite different results from the others.

  • PDF

트랙터 펜더의 진동저감을 위한 개선설계 방법 (Improvement Design Method for Vibration Reduction of Tractor Fender)

  • 김민규;김원진
    • 한국소음진동공학회논문집
    • /
    • 제26권5호
    • /
    • pp.584-593
    • /
    • 2016
  • In this study, an improvement design method for reducing the vibration of fenders equipped in a tractor is proposed through the establishment of a finite element model and the topology optimization. As the original shapes of the parts cannot be altered, an improved design model was derived in which a stiffener was attached to the border of parts. Thus, the first resonance frequency was increased by approximately 16 Hz, which was confirmed to be the frequency interval for avoiding the idle and operating frequency of the engine. Finally the improved design model was applied to confirm the effect of vibration reduction. Therefore, it can be concluded that the improved design model of the tractor fender is effective at reducing vibrations of the tractor fender.

Earthquake Damage Monitoring for Underground Structures Based Damage Detection Techniques

  • Kim, Jin Ho;Kim, Na Eun
    • International Journal of Railway
    • /
    • 제7권4호
    • /
    • pp.94-99
    • /
    • 2014
  • Urban railway systems are located under populated areas and are mostly constructed for underground structures which demand high standards of structural safety. However, the damage progression of underground structures is hard to evaluate and damaged underground structures may not effectively stand against successive earthquakes. This study attempts to examine initial damage-stage and to access structural damage condition of the ground structures using Earthquake Damage Monitoring (EDM) system. For actual underground structure, vulnerable damaged member of Ulchiro-3ga station is chosen by finite element analysis using applied artificial earthquake load, and then damage pattern and history of damaged members is obtained from measured acceleration data introduced unsupervised learning recognition. The result showed damage index obtained by damage scenario establishment using acceleration response of selected vulnerable members is useful. Initial damage state is detected for selected vulnerable member according to established damage scenario. Stiffness degrading ratio is increasing whereas the value of reliability interval is decreasing.

A novel story on rock slope reliability, by an initiative model that incorporated the harmony of damage, probability and fuzziness

  • Wang, Yajun
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.269-294
    • /
    • 2017
  • This study aimed to realize the creation of fuzzy stochastic damage to describe reliability more essentially with the analysis of harmony of damage conception, probability and fuzzy degree of membership in interval [0,1]. Two kinds of fuzzy behaviors of damage development were deduced. Fuzzy stochastic damage models were established based on the fuzzy memberships functional and equivalent normalization theory. Fuzzy stochastic damage finite element method was developed as the approach to reliability simulation. The three-dimensional fuzzy stochastic damage mechanical behaviors of Jianshan mine slope were analyzed and examined based on this approach. The comprehensive results, including the displacement, stress, damage and their stochastic characteristics, indicate consistently that the failure foci of Jianshan mine slope are the slope-cutting areas where, with the maximal failure probability 40%, the hazardous Domino effects will motivate the neighboring rock bodies' sliding activities.

환형 무전극 램프의 광학적, 전자계적 특성 (Optical and Electromagnetic Distribution of Ring-shaped Electrodeless Fluorescent Lamps)

  • 조주웅;이성진;최용성;김용갑;박대희
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2003년도 학술대회논문집
    • /
    • pp.161-163
    • /
    • 2003
  • Ring-shaped electrodeless fluorescent lamp is removed the internal electrodes and heating filaments that are a light-limiting factor of conventional fluorescent lamps. The ring-shaped electrodeless lamp is intended as a high efficacy replacement for the incandescent reflector lamp in many applications. In this paper, maxwell 3D finite element analysis program (Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by 3D simulation software operated at 250[㎑]and some specific conditions. The optical measurement measured luminance and a temperature and an optical spectrum distribution for 10 minutes in a one minute interval at the same time.

  • PDF

정성분석기법을 이용한 공용중인 강철도교의 잔존피로수명평가에 관한 연구 (A Study of Fatigue Life Evaluation for the Servicing Railway Steel Bridge)

  • 박용걸;최정열
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.982-987
    • /
    • 2004
  • Most design practices have not taken advantage of the advanced theories in the modern fracture mechanics and finite element analysis due to complexity of analysis as well as the large quantity of vaguely defined parameters in actual designs. This paper considers fatigue problems in bridge structures using effective analytical and design tools from the field of qualitative constraint reasoning. A set of software modules was developed for fatigue analysis ,and evaluation, which is easily applicable in engineering practices of bridge designers. The software modules integrate techniques in the field of knowledge representation and qualitative reasoning, into the conventional fatigue analysis. The techniques enable the use complex analysis formulations to tackle practical problems with uncertainties, and present the design outcome in two-dimensional design space. Appropriate engineering assumptions and judgments in carrying out these procedures, often the most difficult part for practicing engineers, can be partially produced by using qualitative reasoning to define the trends and ranges, interval constraint analysis to derive the controlling parameters, as well as design space to account for practical experience. This paper depicts a way of complex analysis to practical engineering designs with qualitative reasoning.

  • PDF