• 제목/요약/키워드: interstellar dust

검색결과 76건 처리시간 0.018초

STARDUSTS IN SUPERNOVA REMNANTS SEEN BY AKARI

  • Koo, Bon-Chul
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.225-230
    • /
    • 2012
  • Supernovae (SN) and supernova remnants (SNRs) play a major role in the life-cycle of interstellar dusts. Fast shock waves generated by SN explosions sweep out the interstellar space destroying dust grains and modifying their physical and chemical properties. The dense, cooling SN ejecta, on the other hand, provide an environment for dusts to condense. Recent space-infrared telescopes have revealed the hidden universe related to these fascinating microscopic processes. In this paper, I introduce the results on stardusts in young core-collapse supernova remnants obtained by AKARI. The AKARI results show diverse infrared characteristics of stardusts associated with SNRs, implying diverse physical/chemical stellar structures and circumstellar environments at the time of explosion.

먼지 산란의 몬테카를로 시뮬레이션 (MONTE-CARLO SIMULATION OF THE DUST SCATTERING)

  • 선광일
    • 천문학논총
    • /
    • 제24권1호
    • /
    • pp.43-51
    • /
    • 2009
  • 이 연구에서는 임의의 밀도 분포를 갖는 성간 먼지 구름에 의해 산란되는 산란광을 분석할 수 있는 몬테카를로 시뮬레이션 코드를 개발하였다. 개발된 코드의 신뢰성을 확보하기 위해 구 대칭의 성간먼지 구름의 중심에 별이 있고, 별빛이 얼마만큼 산란되어 나오는 지 계산하여 Code (1973)의 결과와 비교하였으며, Code의 근사식과 매우 잘 일치하는 결과를 주는 것을 확인하였다. 이 코드는 우리 은하뿐만 아니라 외부은하의 경우에도 손 쉽게 확장이 가능하다. 개발된 코드는 과학위성 1호로 관측된 원자외선 연속복사광의 분석에 적용하여 성간먼지 구름의 특성과 우리 은하의 복사장의 분포를 연구하는 데 사용하고자 한다.

The distribution of the molecular hydrogen in the Milky way

  • Jo, Young-Soo;Seon, Kwang-Il;Min, Kyoung-wook
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.40.1-40.1
    • /
    • 2016
  • We present the far-ultraviolet fluorescent molecular hydrogen ($H_2$) emission map observed with FIMS/SPEAR for ~76% of the sky. The fluorescent $H_2$ emission is found to be saturated by strong dust extinction at the optically thick, Galactic plane region. However, the extinction-corrected intensity of fluorescent $H_2$ emission is found to have strong linear correlations with the well-known tracers of the cold interstellar medium, such as the E(B-V) color excess, neutral hydrogen column density N(HI), $H{\alpha}$ emission, and CO $J=1{\rightarrow}0$ emission. The all-sky molecular hydrogen column density map is also obtained using a photodissociation region model. We also derive the gas-to-dust ratio, hydrogen molecular fraction ($f_{H2}$), and $CO-to-H_2$ conversion factor ($X_{CO}$) of the diffuse interstellar medium. The gas-to-dust ratio is consistent with the standard value $5.8{\times}10^{21}atoms\;cm^{-2}mag^{-1}$, and the $X_{CO}$ tends to increase with E(B-V), but converges to the Galactic mean value $1.8{\times}10^{20}cm^{-2}K^{-1}km^{-1}s$ at optically thick regions with E(B-V)>2.0.

  • PDF

Near-IR Polarization of the Northeastern Region of the Large Magellanic Cloud

  • Kim, Jaeyeong
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.42.2-42.2
    • /
    • 2017
  • The Large Magellanic Cloud (LMC) is a unique target to study the detail structures of molecular clouds and star-forming regions, due to its proximity and face-on orientation from us. Most part of the astrophysical subjects for the LMC have been investigated, but the magnetic field is still veiling despite its role in the evolution of the interstellar medium (ISM) and in the main force to influence the star formation process. Measuring polarization of the background stars behind interstellar medium allows us to describe the existence of magnetic fields through the polarization vector map. In this presentation, I introduce the near-infrared polarimetric results for the $39^{\prime}{\times}69^{\prime}$ field of the northeastern region of the LMC and the N159/N160 star-forming complex therein. The polarimetric observations were conducted at IRSF/SIRPOL 1.4 m telescope. These results allow us to examine both the global geometry of the large-scale magnetic field in the northeastern region and the close structure of the magnetic field in the complex. Prominent patterns of polarization vectors mainly follow dust emission features in the mid-infrared bands, which imply that the large-scale magnetic fields are highly involved in the structure of the dust cloud in the LMC. In addition, local magnetic field structures in the N159/N160 star-forming complex are investigated with the comparison between polarization vectors and molecular cloud emissions, suggesting that the magnetic fields are resulted from the sequential formation history of this complex. I propose that ionizing radiation from massive stellar clusters and the expanding bubble of the ionized gas and dust in this complex probably affect the nascent magnetic field structure.

  • PDF

IS THE ANOMALOUS MICROWAVE EMISSION DUE TO THE ROTATION OF INTERSTELLAR PAHS? PLANCK RESULTS: PLANCK - AKARI PROJECT

  • Planck Collaboration, Planck Collaboration;Giard, M.;Berne, O.;Doi, Y.;Ishihara, D.;Joblin, Ch.;Kaneda, I.;Marshall, D.;Nakagawa, T.;Ohsawa, R.;Onaka, T.;Sakon, I.;Shibai, H.;Ysard, N.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.195-200
    • /
    • 2012
  • We show how the rotation emission from isolated interstellar Polycyclic Aromatic Hydrocarbons (PAHs) can explain the so-called anomalous microwave emission (AME). AME has been discovered in the last decade as microwave interstellar emission (10 to 70 GHz) that is in excess compared to the classical emission processes: thermal dust, free-free and synchrotron. The PAHs are the interstellar planar nano-carbons responsible for the near infrared emission bands in the 3 to 15 micron range. Theoretical studies show that under the physical conditions of the interstellar medium (radiation and density) the PAHs adopt supra-thermal rotation velocities, and consequently they are responsible for emission in the microwave range. The first results from the PLANCK mission unexpectedly showed that the AME is not only emitted by specific galactic interstellar clouds, but it is present throughout the galactic plane, and is particularly strong in the cold molecular gas. The comparison of theory and observations shows that the measured emission is fully consistent with rotation emission from interstellar PAHs. We draw the main lines of our PLANCK-AKARI collaborative program which intends to progress on this question by direct comparison of the near infrared (AKARI) and microwave (PLANCK) emissions of the galactic plane.

An automated analysis tool for the IR absorption spectra of interstellar ices

  • Kim, Chul-Hwan;Lee, Jeong-Eun;Kim, Jaeyeong;Jeong, Woong-Seob
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.57.1-57.1
    • /
    • 2021
  • The icy mantles of interstellar grains are developed by the freeze-out of interstellar molecules and atoms onto grain surfaces. The ice molecules become more complex by surface chemistry induced directly by high energy photons or by the thermal energy diffused over heated grain surface. Therefore, the ice composition is an important tracer of physical conditions where the ices form. Ices have been studied via their absorption features against continuum sources, such as young stellar objects or evolved background stars, in infrared wavelengths. The Spitzer IRS was the most sensitive spectrometer for the observations of infrared ice absorption features. We has been developing an automated analysis tool for the Spitzer IRS spectra, especially for the 15 ㎛ CO2 bending mode. The 15 ㎛ CO2 absorption feature is very useful for the study of accretion process in star formation since its spectral shape varies with thermal condition of the dust grains. Eventually, this tool will cover the whole range of the Spitzer IRS spectrum (5~20 ㎛).

  • PDF

성간먼지 산란 연구를 위한 효율적인 몬테카를로 알고리즘 (AN EFFICIENT MONTE-CARLO ALGORITHM FOR DUST-SCATTERING STUDY)

  • 선광일
    • 천문학논총
    • /
    • 제25권4호
    • /
    • pp.177-186
    • /
    • 2010
  • We developed an efficient Monte-Carlo algorithm to solve dust-scattering radiative transfer problems for continuum radiation. The method calculates the scattered intensities for various anisotropic factors ($g_i$) all at once, while actual photon packets are tracked following a scattering phase function given by a single anisotropic factor ($g_0$). The algorithm was tested by applying the method to a dust cloud embedding a star at the cloud center and found to provide accurate results within the statistical fluctuation that is intrinsic in Monte-Carlo simulations. It was found that adopting $g_0$ = 0.4 - 0.5 in the algorithm is most efficient. The method would be efficient in estimating the anisotropic factor of the interstellar dust by comparing the observed data with radiative transfer models.

Dust Radiative Transfer Model of Spectral Energy Distributions in Clumpy, Galactic Environments

  • 선광일
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.52.2-52.2
    • /
    • 2018
  • The shape of a galaxy's spectral energy distribution ranging from ultraviolet (UV) to infrared (IR) wavelengths provides crucial information about the underlying stellar populations, metal contents, and star-formation history. Therefore, analysis of the SED is the main means through which astronomers study distant galaxies. However, interstellar dust absorbs and scatters UV and optical light, re-emitting the absorbed energy in the mid-IR and Far-IR. I present the updated 3D Monte-Carlo radaitive transfer code MoCafe to compute the radiative transfer of stellar, dust emission through a dusty medium. The code calculates the emission expected from dust not only in pure thermal equilibrium state but also in non-thermal equilibrium state. The stochastic heating of very small dust grains and/or PAHs is calculated by solving the transition probability matrix equation between different vibrational, internal energy states. The calculation of stochastic heating is computationally expensive. A pilot study of radiative transfer models of SEDs in clumpy (turbulent), galactic environments, which has been successfully used to understand the Calzetti attenuation curves in Seon & Draine (2016), is also presented.

  • PDF

FAR-INFRARED [C II] EMISSION FROM THE CENTRAL REGIONS OF SPIRAL GALAXIES

  • MOCHIZUKI KENJI
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.193-197
    • /
    • 2004
  • Anomalies in the far-infrared [C II] 158 ${\mu}m$ line emission observed in the central one-kiloparsec regions of spiral galaxies are reviewed. Low far-infrared intensity ratios of the [C II] line to the continuum were observed in the center of the Milky Way, because the heating ratio of the gas to the dust is reduced by the soft interstellar radiation field due to late-type stars in the Galactic bulge. In contrast, such low line-to-continuum ratios were not obtained in the center of the nearby spiral M31, in spite of its bright bulge. A comparison with numerical simulations showed that a typical column density of the neutral interstellar medium between illuminating sources at $hv {\~} 1 eV $ is $N_H {\le}10^{21}\;cm^{-2}$ in the region; the medium is translucent for photons sufficiently energetic to heat the grains but not sufficiently energetic to heat the gas. This interpretation is consistent with the combination of the extremely high [C Il]/CO J = 1-0 line intensity ratios and the low recent star-forming activity in the region; the neutral interstellar medium is not sufficiently opaque to protect the species even against the moderately intense incident UV radiation. The above results were unexpected from classical views of the [C II] emission, which was generally considered to trace intense interstellar UV radiation enhanced by active star formation.

A SYSTEMATIC STUDY OF DUST IN EARLY-TYPE GALAXIES WITH AKARI

  • Kokusho, Takuma;Kaneda, Hidehiro;Kondo, Toru;Oyabu, Shinki;Yamagishi, Mitsuyoshi;Murata, Katsuhiro
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.151-153
    • /
    • 2017
  • Early-type galaxies (ETGs) are generally dominated by old low-mass stars, which are not very productive of dust, and hot interstellar plasmas, which are very destructive of dust. Thus ETGs provide harsh environments for survival of dust. It has been found that some ETGs contain a large amount of dust, and yet its supply mechanism is not understood well. We present the result of a systematic study of dust in ETGs with the AKARI mid- and far-infrared all-sky surveys. From the AKARI result and the Ks band data obtained by ground-based telescopes, we find that there is a global correlation between the dust mass and stellar luminosity. We also compare the AKARI all-sky survey result with the CO data to discuss origins of dust in ETGs.