• 제목/요약/키워드: intersection capacity

검색결과 103건 처리시간 0.027초

세장한 철근콘크리트 보의 병형기초 전단강도 모델 (Deformation-Based Shear Strength Model for Slender Reinforced Concrete Beams)

  • 최경규;박홍근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.391-394
    • /
    • 2005
  • A theoretical model was developed to predict the shear strength of slender reinforced concrete beams. The shear force applied to a cross-section of the beam was assumed to be resisted primarily by the compressive zone of intact concrete rather than by the tensile zone. The shear capacity of the cross section was defined based on the material failure criteria of concrete: failure controlled by compression and failure controlled by tension. In the evaluation of the shear capacity, interaction with the normal stresses developed by the flexural moment in the cross section was considered. In the proposed strength model, the shear strength of the beam and the location of the critical section were determined at the intersection between the shear capacity and shear demand curves. The proposed strength model was verified by the comparisons to prior experimental results.

  • PDF

Ultimate bearing capacity of conical shell foundations

  • Colmenares, J.E.;Kang, So-Ra;Shin, Young-Jin;Shin, Jong-Ho
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.507-523
    • /
    • 2014
  • Shell foundations have been employed as an alternative for the conventional flat shallow foundations and have proven to provide economical advantage. They have shown considerably improved performance in terms of ultimate capacity and settlement characteristics. However, despite conical shell foundations are frequently used in industry, the theoretical solutions for bearing capacity of these footings are available for only triangular shell strip foundations. The benefits in design aspects can be achieved through theoretical solutions considering shell geometry. The engineering behavior of a conical shell foundation on mixed soils was investigated experimentally and theoretically in this study. The failure mechanism was obtained by conducting laboratory model tests. Based on that, the theoretical solution of bearing capacity was developed and validated with experimental results, in terms of the internal angle of the cone. In comparison to the circular flat foundation, the results show 15% increase of ultimate load and 51% decrease of settlement at an angle of intersection of $120^{\circ}$. Based on the results, the design chart of modified bearing capacity coefficients for conical shell foundation is proposed.

신호교차로 영향에 따른 도시고속도로 유출연결로 최소이격거리에 관한 연구 (Determination of Minimum Spacing between Off-ramp Terminus and Intersection Considering the Influence of Adjacent Signalized Intersections)

  • 김상구;심대영;허두완
    • 대한교통학회지
    • /
    • 제25권4호
    • /
    • pp.79-87
    • /
    • 2007
  • 도시고속도로의 인터체인지는 대규모의 유출교통량과 인접교차로의 잦은 지정체로 인하여 교통운영상 많은 문제점을 내포하는 지점으로 알려져 있다. 도시부 고속도로의 인터체인지에서 분류된 유출교통류는 가장 가까운 인접 신호교차로의 운영상태 및 교통량상태에 의해서 영향을 받게 된다. 이러한 인접교차로의 영향으로는 인접가로의 대기행렬이 유출연결로의 가로접속부까지 형성되었을 경우, 유출교통량이 인접가로로 진입하지 못하고 유출연결로상에 대기행렬을 형성하여 정체가 심해지면 고속도로 본선에까지 영향을 미치게 된다. 이러한 문제로 인해 유출연결로와 접속되는 인접가로의 위치가 주변 교차로의 교통류 상태에 중요한 변수로 작용하게 되는데 현재 설계기준으로는 이러한 영향까지 고려한 기준을 제시하지 못하고 있는 실정이다. 본 연구는 인접교차로의 운영에 대한 영향을 고려하여 인접교차로에서 유출연결로까지의 간격을 구하는 모형식을 개발하고자 한다. 인접교차로로 인해 유출연결로의 교통류에 영향을 미치는 변수로는 유효녹색비(g/C), v/c비(교통량 대 용량비), 가로차로수와 유출연결로교통량이 선정되었다. 이러한 변수들에 대한 영향을 반영하고자 시뮬레이션 프로그램(VISSIM)을 이용하여 도로망을 구축하고 변수들의 다양한 조건을 반영한 시나리오를 작성하였다. 각 시나리오별로 구성된 교통, 도로, 신호조건을 반영한 인접가로의 대기행렬길이를 시뮬레이션하여 결정하고, 이러한 대기행렬길이가 인접교차로와 유출연결로 접속부와의 간격을 결정하는 중요한 기준치로 사용되었다. 시뮬레이션 분석결과, 시나리오별로 다양한 대기행렬길이가 산정되었고 사용된 변수와 대기행렬길이를 이용하여 회귀모형식을 개발하였다. 개발된 회귀모형식은 인터체인지의 계획 및 설계시 인접교차로와의 관계를 고려하여 유출연결로의 위치를 결정하는 설계기준에 반영할 수 있을 것이고, 이로 인해 향후 인터체인지 주변의 교차로 운영과 고속도로 본선 교통류의 효율적 관리에 기여할 것으로 기대된다.

독립신호 교차로에서의 교통안전을 위한 서비스수준 결정방법의 개발 (DEVELOPMENT OF SAFETY-BASED LEVEL-OF-SERVICE CRITERIA FOR ISOLATED SIGNALIZED INTERSECTIONS)

  • Dr. Tae-Jun Ha
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.3-32
    • /
    • 1995
  • The Highway Capacity Manual specifies procedures for evaluating intersection performance in terms of delay per vehicle. What is lacking in the current methodology is a comparable quantitative procedure for ass~ssing the safety-based level of service provided to motorists. The objective of the research described herein was to develop a computational procedure for evaluating the safety-based level of service of signalized intersections based on the relative hazard of alternative intersection designs and signal timing plans. Conflict opportunity models were developed for those crossing, diverging, and stopping maneuvers which are associated with left-turn and rear-end accidents. Safety¬based level-of-service criteria were then developed based on the distribution of conflict opportunities computed from the developed models. A case study evaluation of the level of service analysis methodology revealed that the developed safety-based criteria were not as sensitive to changes in prevailing traffic, roadway, and signal timing conditions as the traditional delay-based measure. However, the methodology did permit a quantitative assessment of the trade-off between delay reduction and safety improvement. The Highway Capacity Manual (HCM) specifies procedures for evaluating intersection performance in terms of a wide variety of prevailing conditions such as traffic composition, intersection geometry, traffic volumes, and signal timing (1). At the present time, however, performance is only measured in terms of delay per vehicle. This is a parameter which is widely accepted as a meaningful and useful indicator of the efficiency with which an intersection is serving traffic needs. What is lacking in the current methodology is a comparable quantitative procedure for assessing the safety-based level of service provided to motorists. For example, it is well¬known that the change from permissive to protected left-turn phasing can reduce left-turn accident frequency. However, the HCM only permits a quantitative assessment of the impact of this alternative phasing arrangement on vehicle delay. It is left to the engineer or planner to subjectively judge the level of safety benefits, and to evaluate the trade-off between the efficiency and safety consequences of the alternative phasing plans. Numerous examples of other geometric design and signal timing improvements could also be given. At present, the principal methods available to the practitioner for evaluating the relative safety at signalized intersections are: a) the application of engineering judgement, b) accident analyses, and c) traffic conflicts analysis. Reliance on engineering judgement has obvious limitations, especially when placed in the context of the elaborate HCM procedures for calculating delay. Accident analyses generally require some type of before-after comparison, either for the case study intersection or for a large set of similar intersections. In e.ither situation, there are problems associated with compensating for regression-to-the-mean phenomena (2), as well as obtaining an adequate sample size. Research has also pointed to potential bias caused by the way in which exposure to accidents is measured (3, 4). Because of the problems associated with traditional accident analyses, some have promoted the use of tqe traffic conflicts technique (5). However, this procedure also has shortcomings in that it.requires extensive field data collection and trained observers to identify the different types of conflicts occurring in the field. The objective of the research described herein was to develop a computational procedure for evaluating the safety-based level of service of signalized intersections that would be compatible and consistent with that presently found in the HCM for evaluating efficiency-based level of service as measured by delay per vehicle (6). The intent was not to develop a new set of accident prediction models, but to design a methodology to quantitatively predict the relative hazard of alternative intersection designs and signal timing plans.

  • PDF

교차로 좌회전 궤적에 따른 용량 및 정지선 위치결정에 관한 연구 (A Study on Decision of Stop-line Position and Capacity according to the Left-turn Trajectory at Intersection)

  • 김기용
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1999년도 제36회 학술발표회논문집
    • /
    • pp.315-320
    • /
    • 1999
  • 교차로 좌회전 이동류에 대해 곡선반경의 확보여부는 용량 및 안전성측면에 많은 영향을 주게 된다. 죄회전 곡선반경의 결정은 설계기준차량의 회전궤적에 따라 결정되며 곡선반경의 모양은 원곡선의 형태를 유지하는 것이 바람직한 형태로 제시되고 있다. 교차로 설게시 곡선반경의 확보방안으로 정지선을 후퇴시키는 방안을 제시함으로서 좌회전 이동류에 대해 용량 및 안전성을 개선할 수 있도록 하였다.

  • PDF

지반-구조물 상호작용 효과를 고려한 확률론적 역량스펙트럼법 (Probabilistic capacity spectrum method considering soil-structure interaction effects)

  • 채리토노세테;김두기;김동현;조성국
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.65-70
    • /
    • 2008
  • The capacity spectrum method (CSM) is a deterministic seismic analysis approach wherein the expected seismic response of a structure is established as the intersection of the demand and capacity curves. Recently, there are a few studies about a probabilistic CSM where uncertainties in design factors such as material properties, loads, and ground motion are being considered. However, researches show that soil-structure interaction also affects the seismic responses of structures. Thus, their uncertainties should also be taken into account. Therefore, this paper presents a probabilistic approach of using the CSM for seismic analysis considering uncertainties in soil properties. For application, a reinforced concrete bridge column structure is employed as a test model. Considering the randomness of the various design parameters, the structure's probability of failure is obtained. Monte Carlo importance sampling is used as the tool to assess the structure's reliability when subjected to earthquakes. In this study, probabilistic CSM with and without consideration of soil uncertainties are compared and analyzed. Results show that the analysis considering soil structure interaction yields to a greater probability of failure, and thus can lead to a more conservative structural design.

  • PDF

Limit state assessment of nodal zone capacity in strut-and-tie models

  • Tjhin, Tjen N.;Kuchma, Daniel A.
    • Computers and Concrete
    • /
    • 제4권4호
    • /
    • pp.259-272
    • /
    • 2007
  • A method based on the lower-bound theorem of limit analysis is presented for the capacity assessment of nodal zones in strut-and-tie models. The idealized geometry of the nodal zones is formed by the intersection of effective widths of the framing struts and ties. The stress distribution is estimated by dividing the nodal zones into constant stress triangles separated by lines of stress discontinuity. The strength adequacy is verified by comparing the biaxial stress field in each triangle with the corresponding failure criteria. The approach has been implemented in a computer-based strut-and-tie tool called CAST (Computer-Aided Strut-and-Tie). An application example is also presented to illustrate the approach.

Investigation on the failure type of tower segments under equivalent static wind loads

  • Li, Yue;Xie, Qiang;Yang, Zheng
    • Wind and Structures
    • /
    • 제34권2호
    • /
    • pp.161-171
    • /
    • 2022
  • This paper presents a failure type assessment curve method to judge the failure type of transmission tower segments. This novel method considers the equivalent static wind load characteristics and the transmission tower members' load-bearing capacities based on numerical simulations. This method can help judge the failure types according to the relative positions between the actual state points and the assessment curves of transmission tower segments. If the extended line of the actual state point intersects with the horizontal part's assessment curve, the segment would lose load-bearing capacity due to the diagonal members' failure. Another scenario occurs when the intersection point is in the oblique part, indicating that the broken main members have caused the tower segment to fail. The proposed method is verified by practical engineering case studies and static tests on the scaled tower segments.

Experimental and Numerical Study on Complex Multi-planar Welded Tubular Joints in Umbrella-Type Space Trusses with Long Overhangs

  • Jiao, Jinfeng;Ma, Xiao;Lei, Honggang;Chen, Y. Frank
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1525-1540
    • /
    • 2018
  • A test rig with multi-functional purposes was specifically designed and manufactured to study the behavior of multi-planar welded tubular joints subjected to multi-planar concurrent axial loading. An experimental investigation was conducted on full-scale welded tubular joints with each consisting of one chord and eight braces under monotonic loading conditions. Two pairs or four representative specimens (two specimens for each joint type) were tested, in which each pair was reinforced with two kinds of different internal stiffeners at the intersections between the chords using welded rectangular hollow steel sections (RHSSs) and the braces using rolled circular hollow steel sections (CHSSs) and welded RHSSs. The effects of different internal stiffeners at the chord-brace intersection on the load capacity of joints under concurrent multi-planar axial compression/tension are discussed. The test results of joint strengths, failure modes, and load-stress curves are presented. Finite element analyses were performed to verify the experimental results. The study results show that the two different joint types with the internal stiffeners at the chord-brace intersection under axial compression/tension significantly increase the corresponding ultimate strength to far exceed the usual design strength. The load carrying capacity of welded tubular joints decreases with a higher degree of the manufacturing imperfection in individual braces at the tubular joints. Furthermore, the interaction effect of the concurrent axial loading applied at the welded tubular joint on member stress is apparent.

PSO-BFO 알고리즘을 통한 교통 신호 최적화 연구 (A Study of Traffic Signal Timing Optimization Based on PSO-BFO Algorithm)

  • 안홍기;배기목
    • 한국ITS학회 논문지
    • /
    • 제22권6호
    • /
    • pp.182-195
    • /
    • 2023
  • 최근 인공지능 알고리즘을 활용한 교통 신호 제어에 관한 관심 증대와 함께, 관련 모델구축 연구가 활발히 진행되고 있다. 그러나 대부분의 연구는 독립 교차로를 대상으로, 교통량 변화에 연동되는 신호 주기 산정을 위한 이론 전개가 주를 이루고 있다. 본 연구에서는 신호제어 알고리즘 구축을 위한 실증 분석을 통해, 신호운영과 회전교차 방식의 실제 교차로를 대상으로 분석을 진행하였다. 기존 연구에서 많이 활용되는 GA와 PSO 알고리즘을 개선한 PSO-BFO 알고리즘을 제시하여 두 교차로의 운영 효과 증진을 위한 신호제어 방안을 강구 하였다. 그 결과, 158초의 신호 주기하에 신호 교차로의 경우, 용량 증대 3.4%, 지체도 및 정지횟수 감소는 각각 8.2%, 8.3%의 효과가 발생하고, 회전교차로에서는 용량증대 9.2%, 지체도 및 정지횟수 감소가 각각 7.1%, 27.2%에 이르는 효과가 발생하는 것으로 나타났다.