• Title/Summary/Keyword: intersection angle

Search Result 96, Processing Time 0.028 seconds

Analysis of Traffic Accidents at Unsignalized Intersections in case of Cheongju (비신호교차로의 교통사고 분석 (청주시를 사례로))

  • Park, Byeong-Ho;Kim, Hui-Sik;Im, Min-Hui;Park, Sang-Hyeok
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.67-77
    • /
    • 2007
  • This study deals with the traffic accidents at the unsignalized intersections in Cheongju. The purpose is to analyze the characters and the relations between road environmental factors and traffic accidents. The correlation analyses among the above factors show that the accidents are strongly related to traffic volumes and sight distances in 3-legged, and the cross angles, maximum vertical grades and sight distances in 4-legged unsignalized intersections. Also the multiple linear and nonlinear regression analyses represent that the accidents in the 3-legged increase as the traffic volume and the number of double stop-lines increase, and that the accidents in the 4-legged increase as the cross angle approaches to the 90 degree and decrease as the maximum vertical grade increases. It could be expected that this results give the good implications to the future intersection improvement projects in Cheongju.

Safety Assessment of Signalized Intersection Using SSAM : A Case of Actuated Signal Control (SSAM을 이용한 신호교차로 안전성 평가(감응식 교통제어 도입사례를 중심으로))

  • Yun, Il-Soo;Lee, Choul-Ki;Choi, Jin-Hyung;Ko, Se-Jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.1-14
    • /
    • 2011
  • The surrogate safety assessment model which was developed based on the conflict theory by FHWA in the US is software to analyze traffic conflicts using the individual vehicle trajectory data from a microscopic traffic simulation model. This study aims at assessing the safety of different signal control strategies, including pre-time and actuated signal control, using the SSAM. To this end, this study effort has developed a microscopic traffic simulation model using VISSIM through a field study, and then produced the surrogate measures, including TTC, PET, DR, MaxS and DeltaS, and the numbers of conflicts, including rear-end, right angle and lane-changing conflicts. The assessment results indicated that the actuated signal control may produce more conflicts in terms of rear-end conflicts. The use of SSAM in the safety assessments for diverse traffic alternatives in a safe and fast way may contribute to the improvement of safety in the roadway transportation.

The New Radiographic Evaluation of Hindfoot Alignment (후족부 정렬의 새로운 방사선학적 평가 방법)

  • Han, Woo-Yeon;Lee, Ho-Seong;Kim, Won-Kyeong;Ahn, Ji-Yong
    • Journal of Korean Foot and Ankle Society
    • /
    • v.16 no.3
    • /
    • pp.169-174
    • /
    • 2012
  • Purpose: There are various methods proposed for the evaluation of the hindfoot alignment. However, due to structural calcaneus variances between patients, it is hard to assess this alignment definitively. Thus, this study proposes a new method for evaluating of the hindfoot alignment and its comparisons to the existing current methods. Materials and Methods: This study includes simple weight bearing hindfoot coronal view radiographs of 120 patients, taken between the time period of March 2008 to November 2009. Among the 120 patients, there was a 1:1 ratio of male to female with an average age of 40. The newly proposed method for evaluating this alignment is to draw a moment arm from the point where the sustentaculum tali meets the medial calcaneus border to the most prominent aspect of the lateral process of the calcaneal tuberosity. The angle produced via the intersection of this moment arm to the mid-longitudinal axis of the tibia is found and used to evaluate the hindfoot alignment. The inter and intra-observer reliability was evaluated using the coefficient of intraclass correlation. This study also investigates the comparisons between the newly proposed method to the traditionally used Saltzman et al hindfoot alignment evaluating technique. Results: The newly proposed method has higher inter and intra-observer reliability than the existing traditional Saltzman et al technique. Conclusion: This new method is recommended over the traditionally used Saltzman et al technique as it has a stronger confidence level and is appropriate for assessing hindfoot alignment in simple radiographs.

A deep learning-based approach for feeding behavior recognition of weanling pigs

  • Kim, MinJu;Choi, YoHan;Lee, Jeong-nam;Sa, SooJin;Cho, Hyun-chong
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1453-1463
    • /
    • 2021
  • Feeding is the most important behavior that represents the health and welfare of weanling pigs. The early detection of feed refusal is crucial for the control of disease in the initial stages and the detection of empty feeders for adding feed in a timely manner. This paper proposes a real-time technique for the detection and recognition of small pigs using a deep-leaning-based method. The proposed model focuses on detecting pigs on a feeder in a feeding position. Conventional methods detect pigs and then classify them into different behavior gestures. In contrast, in the proposed method, these two tasks are combined into a single process to detect only feeding behavior to increase the speed of detection. Considering the significant differences between pig behaviors at different sizes, adaptive adjustments are introduced into a you-only-look-once (YOLO) model, including an angle optimization strategy between the head and body for detecting a head in a feeder. According to experimental results, this method can detect the feeding behavior of pigs and screen non-feeding positions with 95.66%, 94.22%, and 96.56% average precision (AP) at an intersection over union (IoU) threshold of 0.5 for YOLOv3, YOLOv4, and an additional layer and with the proposed activation function, respectively. Drinking behavior was detected with 86.86%, 89.16%, and 86.41% AP at a 0.5 IoU threshold for YOLOv3, YOLOv4, and the proposed activation function, respectively. In terms of detection and classification, the results of our study demonstrate that the proposed method yields higher precision and recall compared to conventional methods.

Analysis of Bonding Characteristics of Ag-System Brazing Filler Metal (은계 필러메탈 브레이징 접합부의 특성 분석)

  • Soon-Gil Lee;Hwa-In Lee;Jin-Oh Son;Gwang-Il Ha;Bon-Heun Koo
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.214-221
    • /
    • 2023
  • As a filler metal for lowering the melting point of Ag, many alloy metal candidates have emerged, such as cadmium, with zinc, manganese, nickel, and titanium as active metals. However, since cadmium is known to be harmful to the human body, Cd-free filler metals are now mainly used. Still, no study has been conducted comparing the characteristics of joints prepared with and without cadmium. In addition, studies have yet to be conducted comparing the typical characteristics of brazing filler metals with special structures, and the joint characteristics of brazing filler metals with available frames. In this study, the characteristics of junctions of silver-based intercalation metals were compared based on the type of filler metal additives, using a special structure, a filler metal sandwich structure, to protect the internal base metal. The general filler metal was compared using the structure, and the thickness of the filler metal according to the thickness was reached. A comparison of the characteristics of the junction was conducted to identify the characteristics of an intersection of silver-based brazing filler metal and the effect on joint strength. Each filler metal's collective tensile strength was measured, and the relationship between joint characteristics and tensile joint strength was explored. The junction was estimated through micro strength measurement, contact angle measurement with the base metal when the filler metal was melted, XRD image observation, composition analysis for each phase through SEM-EDS, and microstructure phase acquisition.

Effect of Intersecting Angles of Rock Fractures on Solute Mixing at Fracture Junction (암반단열의 교차각이 교차점에서의 용질의 혼합에 미치는 영향)

  • Kim, Dahye;Yeo, In Wook
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.465-473
    • /
    • 2021
  • This numerical study aims at analyzing the effect of flow characteristics, caused by geometrical features such as intersecting angles, on solute mixing at fracture junctions. It showed that not only Pe, the ratio of advection to diffusion, but also the intersecting angles played an important role in solute mixing at the junction. For the intersection angles less than 90°, the fluid flowed to the outlet in the same direction as the injected flow direction, which increased the contact at the junction with the streamlines coming from the different inlets. On the other hand, for the intersecting angles greater than 90°, the fluid flowed out to the outlet opposite to the flow direction in the inlet, leading to minimizing the contact at the junction. Therefore, in the former case, solute mixing occurred even at high Pe, and in the latter case, solutes transport along the streamlines even at low Pe. For Pe < 1, the complete mixing model was known to occur, but for the intersecting angle greater than 150°, no complete solute mixing occurred. Overall, the transition from the complete mixing model to the streamline-routing model occurred for Pe = 0.1 - 100, but it highly depended on the intersecting angles. Specifically, the transition occurred at Pe = 0.1 - 10 for intersecting angles ≧ 150° and at Pe = 10 - 100 for intersecting angles ≦ 30°. For Pe > 100, the streamline-routing model was dominant regardless of intersecting angles. For Pe > 1,000, the complete streamline-routing model appeared only for the intersecting angles greater than 150°. For the intersecting angles less than 150°, the streamline-routing model dominated over the complete solute mixing, but solute mixing still occurred at the fracture junction.

Pseudo Image Composition and Sensor Models Analysis of SPOT Satellite Imagery for Inaccessible Area (비접근 지역에 대한 SPOT 위성영상의 Pseudo영상 구성 및 센서모델 분석)

  • 방기인;조우석
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.33-44
    • /
    • 2001
  • The paper presents several satellite models and satellite image decomposition methods for inaccessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in $1^{st}$, $2^{nd}$ and $3^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\Phi$(phi) correlated highly with positional parameters could be assigned to constant values. For inaccessible area, satellite images were decomposed, which means that two consecutive images were combined as one image, The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1st order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.

Evaluation of Basic Unit for Non-point Pollutants in Runoff of West Coast Highway - Maesong Area (서해안 고속도로 매송지역 비점오염원 원단위 산정 연구)

  • Park, Seyong;Mo, Kyung;Kim, Leehyung;Kang, Heeman;Kim, Moonil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.33-40
    • /
    • 2010
  • In this study, evaluation of basic unit of non-point pollutant, which is fundamental evaluation of non-point loading, was conducted using both road point and angle of intersection point in Maesong area, West coast highway by utilizing Event Mean Concentrations(EMC). Concentration of pollutants except heavy metals at these two points rapidly decreased in 30 minutes after start of runoff. According to the results of EMC, for both sampling points, it was determined that the concentrations of TSS(Total Suspended Solid), $BOD_5$(Biological Oxygen Demand), and DOC(Dissolved Organic Carbon) were higher than those of wastewater effluent standard in Korea, however, the concentrations of T-N(Total Nitrogen) and T-P(Total Phosphorus) were lower than those of the standard. In terms of heavy metals, Fe, Pb, and Zn showed higher concentrations than others. When compared with the units established by the Ministry of Environment in Korea, the basic units of $BOD_5$ and T-N in this study were lower. On the other hand, when compared with foreign units, Cu, Pb, and Zn showed approximately 10 times higher concentrations. It was estimated that a long term monitoring should be conducted for obtaining additional data and more reliable basic units for the non-point pollutnats based on the results from this study.

A Study on the Structural Behavior of an Underground Radwaste Repository within a Granitic Rock Mass with a Fault Passing through the Cavern Roof (화장암반내 단층지역에 위치한 지하 방사성폐기물 처분장 구조거동연구)

  • 김진웅;강철형;배대석
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.257-269
    • /
    • 2001
  • Numerical simulation is performed to understand the structural behavior of an underground radwaste repository, assumed to be located at the depth of 500 m, in a granitic rock mats, in which a fault intersects the roof of the repository cavern. Two dimensional universal distinct element code, UDEC is used in the analysis. The numerical model includes a granitic rock mass, a canister with PWR spent fuels surrounded by the compacted bentonite inside the deposition hole, and the mixed bentonite backfilled in the rest of the space within the repository cavern. The structural behavior of three different cases, each case with a fault of an angle of $33^{\circ},\;45^{\circ},\;and\;58^{\circ}$ passing through the cavern roof-wall intersection, has been compared. And then fro the case with the $45^{\circ}$ fault, the hydro-mechanical, thermo-mechanical, and thermo-hydro-mechanical interaction behavior have been studied. The effect of the time-dependent decaying heat, from the radioactive materials in PWR spent fuels, on the repository and its surroundings has been studied. The groundwater table is assumed to be located 10m below the ground surface, and a steady state flow algorithm is used.

  • PDF

Pattern Analysis for Urban Spatial Distribution of Traffic Accidents in Jinju (진주시 교통사고의 도시공간분포패턴 분석)

  • Sung, Byeong Jun;Yoo, Hwan Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.99-105
    • /
    • 2014
  • Since traffic accidents account for the highest proportion of the artificial disasters which occur in urban areas along with fire, more scientific an analysis on the causes of traffic accidents and various prevention measures against traffic accidents are needed. In this study, the research selected Jinju-si, which belongs to local small and medium-sized cities as a research target to analyze the characteristics of temporal and spacial distribution of traffic accidents by associating the data of traffic accidents, occurred in 2013 with the causes of traffic accidents and location information that includes occurrence time and seasonal features. It subsequently examines the spatial correlation between traffic accidents and the characteristics of urban space development according to the plans of land using. As a result, the characteristics of accident distribution according to the types of accidents reveal that side right-angle collisions (car versus car) and pedestrian-crossing accident (car versus man) showed the highest clustering in the density analysis and average nearest neighbor analysis. In particular, traffic accidents occurred the most on roads which connect urban central commercial areas, high-density residential areas, and industrial areas. In addition, human damage in damage conditions, clear day in weather condition, dry condition in the road condition, and three-way intersection in the road way showed the highest clustering.