• Title/Summary/Keyword: intersection angle

Search Result 96, Processing Time 0.026 seconds

Effects of parallel undercrossing shield tunnels on river embankment: Field monitoring and numerical analysis

  • Li'ang Chen;Lingwei Lu;Zhiyang Tang;Shixuan Yi;Qingkai Wang;Zhibo Chen
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.29-39
    • /
    • 2023
  • As the intensity of urban underground space development increases, more and more tunnels are planned and constructed, and sometimes it is inevitable to encounter situations where tunnels have to underpass the river embankments. Most previous studies involved tunnels passing river embankments perpendicularly or with large intersection angle. In this study, a project case where two EPB shield tunnels with 8.82 m diameter run parallelly underneath a river embankment was reported. The parallel length is 380 m and tunnel were mainly buried in the moderate / slightly weathered clastic rock layer. The field monitoring result was presented and discussed. Three-dimensional back-analysis were then carried out to gain a better understanding the interaction mechanisms between shield tunnel and embankment and further to predict the ultimate settlement of embankment due to twin-tunnel excavation. Parametrical studies considering effect of tunnel face pressure, tail grouting pressure and volume loss were also conducted. The measured embankment settlement after the single tunnel excavation was 4.53 mm ~ 7.43 mm. Neither new crack on the pavement or cavity under the roadbed was observed. It is found that the more degree of weathering of the rock around the tunnel, the greater the embankment settlement and wider the settlement trough. Besides, the latter tunnel excavation might cause larger deformation than the former tunnel excavation if the mobilized plastic zone overlapped. With given geometry and stratigraphic condition in this study, the safety or serviceability of the river embankment would hardly be affected since the ultimate settlement of the embankment after the twin-tunnel excavation is within the allowable limit. Reasonable tunnel face pressure and tail grouting pressure can to some extent suppress the settlement of the embankment. The recommended tunnel face pressure and tail grouting pressure are 300 kPa and 550 kPa in this study, respectively. However, the volume loss plays the crucial role in the tunnel-embankment interaction. Controlling and compensating the tunneling induced volume loss is the most effective measure for river embankment protection. Additionally, reinforcing the embankment with cement mixing pile in advance is an alternative option in case the predicted settlement exceeds allowable limit.

Performance Analysis of Simultaneous Liftable 3D Concrete Printing Based on Statistical Analysis Algorithm (통계분석 알고리즘 프로그램을 활용한 동시 인상 3D 콘크리트 프린팅의 성능 분석)

  • Yoon-Chul Kim;Sung-Jo Kim;Bongsik Kim;Yongsoo Ji;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.407-414
    • /
    • 2023
  • In this study, an automated jack-up system, applicable to various fields, was employed for 3D concrete printing and developed as a simultaneous liftable 3D concrete printing system. This developed printing system enables safe and precise jack-up by monitoring the measured jack-up distance using Pearson correlation coefficient analysis and a hydraulic system with interquartile range analysis in real-time during 3D concrete printing operations. It is possible to secure the quality of 3D concrete printing structures, which is essential for expanding the application of 3D concrete printing to construct larger structures. Specimens were printed using both conventional 3D concrete printing and simultaneous liftable 3D concrete printing to evaluate the system performance. The printed specimens were investigated using a 3D scanner. The layer-wise diameter and angle of intersection of the scanned specimens were measured, and an analysis was performed to verify the advantages of the simultaneous liftable 3D concrete printing.

Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths and Spacings (3) (미세균열의 길이 및 간격 분포를 이용한 결의 평가(3))

  • Park, Deok-Won;Park, Eui-Seob;Jung, Yong-Bok;Lee, Tae-Jong;Song, Yoon-Ho
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The characteristics of the rock cleavage of Jurassic Geochang granite were analysed using the parameters from the length and spacing-cumulative frequency diagrams. The evaluation for three planes and three rock cleavages was performed using the 25 parameters such as (1~2) slope angle(${\alpha}^{\circ}$and ${\beta}^{\circ}$), (3) intersection angle(${\alpha}-{\beta}^{\circ}$), (4) exponent difference(${\lambda}_S-{\lambda}_L$), (5~12) length of line(oa, ob, ol, os, ss', ll' and sl') and (13~15) length ratio(ol/os, ss'/ll' and ll'/sl'), (16) mean length((ss'+ll')/2), (17~23) area (${\Delta}oaa^{\prime}$, ${\Delta}obb^{\prime}$, ${\Delta}obb^{\prime}$, ${\Delta}oaa_a^{\prime}$, ${\Delta}obb_a^{\prime}$, ${\Delta}ll^{\prime}s^{\prime}$, ${\Delta}ss^{\prime}l^{\prime}$ and ⏢$ll^{\prime}ss^{\prime}$) and (24~25) area difference(${\Delta}obb^{\prime}-{\Delta}oaa^{\prime}$ and ${\Delta}obb_a^{\prime}-{\Delta}oaa_a^{\prime}$). Firstly, the values of the 11 parameters(group I: No. 1, 3~4, 7, 9~10, 13, 15~16, 20 and 25), the 3 parameters(group II: No. 5, 8 and 17) and the 2 parameters(group III: No. 12 and 22) are in orders of H(hardway) < G(grain) < R(rift), R < G < H and G < H < R, respectively. On the contrary, the values of parameters belonging to the above three groups show reverse orders for three planes. Secondly, the generalized chart for three planes and three rock cleavages were made. From the related chart, the distribution types formed by the two diagrams related to lengths and spacings were derived. The diagrams related to spacings show upward curvature in the chart of rift plane(G1 & H1, R') and hardway(H1 & H2, H). On the contrary, the diagrams related to lengths show downward curvature. These two diagrams take the form of a convex lens in the upper section. Besides, the two diagrams cross each other in the lower section. The overall shape formed by the above two diagrams between three planes($H^{\prime}{\rightarrow}G^{\prime}{\rightarrow}R^{\prime}$) and three rock cleavages($R{\rightarrow}G{\rightarrow}H$) display in reverse order. Lastly, these types of correlation analysis is useful for discriminating three quarrying planes.

Formulation of a reference coordinate system of three-dimensional head & neck images: Part II. Reproducibility of the horizontal reference plane and midsagittal plane (3차원 두부영상의 기준좌표계 설정을 위한 연구: II부 수평기준면과 정중시상면의 재현성)

  • Park, Jae-Woo;Kim, Nam-Kug;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.475-484
    • /
    • 2005
  • This study was performed to investigate the reproducibility of the horizontal and midsagittal planes, and to suggest a stable coordinate system for three-dimensional (3D) cephalometric analysis. Eighteen CT scans were taken and the coordinate system was established using 7 reference points marked by a volume model, with no more than 4 points on the same plane. The 3D landmarks were selected on V works (Cybermed Inc., Seoul, Korea), then exported to V surgery (Cybermed Inc., Seoul, Korea) to calculate the coordinate values. All the landmarks were taken twice with a lapse of 2 weeks. The horizontal and midsagittal planes were constructed and its reproducibility was evaluated. There was no significant difference in the reproducibility of the horizontal reference planes, But, FH planes were more reproducible than other horizontal planes. FH planes showed no difference between the planes constructed with 3 out of 4 points. The angle of intersection made by 2 FH planes, composed of both Po and one Or showed less than $1^{\circ}$ difference. This was identical when 2 FH planes were composed of both Or and one Po. But, the latter cases showed a significantly smaller error. The reproducibility of the midsagittal plane was reliable with an error range of 0.61 to $1.93^{\circ}$ except for 5 establishments (FMS-Nc, Na-Rh, Na-ANS, Rh-ANS, and FR-PNS). The 3D coordinate system may be constructed with 3 planes; the horizontal plane constructed by both Po and right Or; the midsagittal plane perpendicular to the horizontal plane, including the midpoint of the Foramen Spinosum and Nc; and the coronal plane perpendicular to the horizontal and midsagittal planes, including point clinoidale, or sella, or PNS.

A STUDY OF INTRAORAL ANATOMIC LANDMARKS OF KOREAN ADULT-UPPER JAW (성인 유치악자 상악골의 악궁과 치열궁의 형태에 관한 조사)

  • Oh, Yu-Ree;Lee, Sung-Bok;Park, Nam-Soo;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.753-768
    • /
    • 1995
  • For accurate impression taking of dental patient and esthetic denture treatment of ednetulous patient, measuring between intraoral anatomic landmarks is useful.In this study the subjects selected at a random were two-jundred forty persons with a mean age 22.5(range 21-24) and were taken impression of by irreversible hydrocolloid impression material(Alginate). On the study model made by dental stone, each individual tray was made and final impresion was taken by border moilding. On final model measurings were performed with 3-dimensional measuring device and the values were analyzed by t-test The results is following : ABOUT THE MEASURED VALUES. 1. The width between maxillary right and left canine cusp tip was average 36.44mm(s.d. 2.48), man 36.67mm, woman 35.83mm(p<0.05). 2. The width between labial height of contour of maxillary right and left canine was average 40.08mm(s.d. 2.42), man 40.29mm, woman 39.52mm(p<0.05). 3. The width between mesio-lingual cusps of maxillary first molar was average 43.14mm(s.d. 3.33), man 43.56mm, woman 42.05mm(p<0.05). 4. The width between buccal alveolar ridge on axis of mesiolingual cusp of right and left maxillary first molar was average 64.89mm(s.d. 3.88), man 65.58mm, woman 62.92mm(p<0.05). 5. The width between buccal alveolar ridge on axis of mesiolingual cusp of right and left maxillary second molar was average 68.58mm(s.d. 3.91), man 69.29mm, woman 66.30mm (p<0.05). 6. The width between right and left hamular notch was average 49.80mm(s.d. 3.96), man 50.70mm, woman 48.20mm(p<0.05). 7. The length from labial heigth of contour of maxillary central incisor to center of incisive papilla was average 9.52mm(s.d. 1.18), man 9.46mm, woman 9.63mm(p>0.05). 8. The length from labial heigth of contour of maxillary central incisor to palatine fovea was average 53.27mm(s.d. 2.93), man 53.93mm, woman 52.08mm(p<0.05). 9. The center of incisive papilla ws located posterior to intercanine line at 0.40mm(s.d. 1.16), man 0.51mm, woman 0.11mm(p<0.05). 10. The height from incisal edge of maxillary central incisor to the labial vestibule was average 21.84mm(s.d. 1.38), man 22.01mm, woman 21.00mm(p<0.05). 11. The height from mesiolingual cusp of maxillary first molar to buccalvestible was average 17.45mm(s.d. 1.42), man 17.56mm, woman 17.08mm(p>0.05). 12. The height from hamular notch to standard occlusal plane was average 6.84mm(s.d. 1.06), man 6.91mm, woman 6.70mm(p>0.05). 13. The height from the deepest point of palatal vault to standard occlsalplane was average 19.95 mm(s.d. 2.03), man 20.19mm, woman 19.12mm(p<0.05). ABOUT THE ARCH FORM 1. The arch form was able to classify into four typr by the rate of the measured values. Each arch form distribution was that the 1 group had 32.46% the 2 group 2.19%, the 3 group 52.83%, the 4 group 12.72%. The sexual composition was that in 1 group man had 73.5%, woman 26.5%, in 2 group man had 40.0%, woman 60.0%, in 3 group man had 83.3%, woman 16.7%, and in 4 group man had 55.17%, woman 44.83%. 2. When canine cusp tip was marked as point O, the intersection point between labial height of contour of maxillary central incisor and intermaxillary suture as point A, height of contour of maxillary second molar buccal alveolar ridge as B point, ${\angle}$AOB was measured $133.8^{\circ}$for the 1 group, $133.0^{\circ}$for the 2 group, $132.3^{\circ}$for the 3 group, $128.9^{\circ}$for the 4 group.

  • PDF

Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths and Spacings (2) (미세균열의 길이 및 간격 분포를 이용한 결의 평가(2))

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • The characteristics of the rock cleavage of Jurassic Geochang granite were analysed using the distribution of microcrack lengths and spacings. The length and spacing-cumulative diagrams for the six directions of rock cleavages were arranged in increasing order ($H2{\rightarrow}R1$) on the density (${\rho}$) of microcrack length. The various parameters were extracted through the combination of above two types of diagrams. The evaluation for the six directions of rock cleavages was performed using the four groups (I~IV) of parameters such as (I) intersection angle (${\alpha}-{\beta}$), exponent difference (${\lambda}_S-{\lambda}_L$), length of line (ol and ll'), length ratio (ol/os and ll'/sl'), mean length ((ss'+ll')/2), area of right-angled triangle (${\Delta}oaa_a^{\prime}$ and ${\Delta}obb_a^{\prime}$) and area difference (${\Delta}obb^{\prime}-{\Delta}oaa^{\prime}$ and ${\Delta}obb_a^{\prime}-{\Delta}oaa_a^{\prime}$), (II) length of line (oa and os) and area (${\Delta}oaa^{\prime}$), (III) length of line (sl') and length ratio (ss'/ll') and (IV) length of line (ob, ss' and ls') and area (${\Delta}obb^{\prime}$, ${\Delta}ll^{\prime}s^{\prime}$, ${\Delta}ss^{\prime}l^{\prime}$ and ⏢ll'ss'). The results of correlation analysis between the values of parameters for three rock cleavages and those for three planes are as follows. The values of parameters for three rock cleavages are in orders of (I) H(hardway, (H1 + H2)/2) < G(grain, (G1 + G2)/2) < R(rift, (R1 + R2)/2), (II) R < G < H, (III) G < H < R and (IV) H < G < R. On the contrary, the values of parameters for three planes are in orders of (I) R' < G' < H', (II) H' < G' < R' and (III and IV) R' < H' < G'. Especially the values of parameters belonging to group I and group II show mutual reverse orders. In conclusion, this type of correlation analysis is useful for discriminating three quarrying planes.