• Title/Summary/Keyword: interrelated wells

Search Result 3, Processing Time 0.019 seconds

The Evaluation of Groundwater Pumping Capacity at a Catchment Area with Interrelated Wells in Volcanic Island: I. Without Consideration of Water Quality (상관우물들이 분포하는 화산섬 집수역에 대한 지하수 양수능의 평가 I. 수질(水質)을 고려하지 않은 경우)

  • Lee, Sunhoon;Machida, Isao;Imoto, Yukari
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.3
    • /
    • pp.189-198
    • /
    • 2003
  • The purpose of this paper is to evaluate the groundwater pumping capadty at a catchment area containing interrelated wells without considering their qualities by using numerical simulation in Miyake Island, young volcanic island with very complicated hydro-geological formations. The groundwater pumping capadties of each well and over entire study area were estimated as the IMY(i,t) by individual withdrawals and the SSMY(t) by simultaneous withdrawals. These results can be used to secure a sure source for taking a plan for supplying water use in young volcanic island as Miyake Island. In simultaneous withdrawals, the withdrawals from well no. 5 and 6 should have the roles as the barrier wells against the intrusion of the groundwater of the part adjacent to Tairo Pond into the inner part of study area. Therefore, it can be suggested to adopt the simultaneous withdrawals as the optimal approach of groundwater management for supplying water use with respect to quantity and quality.

The Evaluation of Groundwater Pumping Capacity at a Catchment Area with Interrelated Wells in Volcanic Island: II. With Consideration of Water Quality (상관우물들이 분포하는 화산섬 집수역에 대한 지하수 양수능의 평가 II. 수질(水質)을 고려한 경우)

  • Lee, Sunhoon;Machida, Isao;Imoto, Yukari
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.3
    • /
    • pp.199-209
    • /
    • 2003
  • The withdrawal method for protecting the uncontaminated part from the spread of contaminants was suggested by a simultaneous equation. The formulation of them is based upon the build up of the ridge part between the contaminated and uncontaminated parts that resulted from the efficient use of barrier wells. The quality in the withdrawn groundwater depends upon the heads at wells no. 5 and 6. The determination of pumping rates and qualities with changing the heads at wells no. 5 and 6 should be given by considering the demand for water use and the capacity and cost for removing the contained contaminants. The results of this study should be used in taking a plan for supplying water use as well as preventing the spread of contaminants from some known contaminated sources.

Analysis of Hydrological Processes for Musim River Basin by Using Integrated Surface water and Groundwater Model (지표수-지하수 통합모형을 이용한 무심천 유역의 수문과정 해석)

  • Kim, Nam-Won;Chung, Il-Moon;Lee, Jeong-Woo;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.5
    • /
    • pp.419-430
    • /
    • 2007
  • Integrated modelling of surface water and groundwater has become important to satisfy the growing demands for sustainable water resources and improved water quality. In this study, the integrated model of the semi-distributed watershed model, SWA T and the fully-distributed groundwater flow model, MODFLOW is applied to Musirn river basin for the purpose of investigating its applicability to reproduce watershed-scale hydrological processes. This objective is accomplished by first demonstrating good agreement between the simulated discharge hydrographs with the measured hydrographs for the period of 2001 -2004 while simultaneously calibrating the calculated groundwater level distribution to observation wells. Next, the integrated model is used to evaluate the effect of different temporal precipitation averages on hydrodynamic processes of streamflow, percolation, recharge and groundwater discharge. Moreover, comprehensive simulations are performed to present the relationships between monthly precipitation and each hydrological component, and to analyze the temporal-spatial variability of recharge. The results show that the components are highly interrelated, and that the heterogeneity of watershed characteristics such as subbasin slope, land use, soil type causes a significant spatial variation of recharge. Overall it is concluded that the model is capable of reproducing the temporally and spatially varied surface and subsurface hydrological processes at the watershed scale.