• Title/Summary/Keyword: interpolation error

Search Result 505, Processing Time 0.033 seconds

Tracking Error Extraction Algorithm in Monopulse Active Homing Radar System

  • Kwon, Jun-Beom;Kim, Do-Hyun;Kim, Lee-Han;Byun, Young-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.158.5-158
    • /
    • 2001
  • Monopulse active homing radar requires velocity and angle information of target to track fast moving target. Target velocity can be estimated by measuring the frequency shift between transmitted and received frequencies. Angle information is obtained by measuring boresight error. Measurement of doppler frequency component in received signal is done through FFT analysis and interpolation algorithm for fine tuning. Boresight errors in azimuth and elevation axes are proportional to the power of each difference channel relative to sum channel. The target signal power in difference channel is estimated more precisely by measuring the power of FFT result cell of maximum ...

  • PDF

Velocity profile generation methods for industrial robots and CNC machine tools

  • Kim, Dong-Il;Song, Jin-Il;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.306-311
    • /
    • 1992
  • We propose software algorithms which provide the characteristics of acceleration/deceleration essential to high dynamic performance at the transient state where industrial robots or CNC machine tools start and stop. The path error, which is one of the most significant factors in performance evaluation of industrial robots and CNC machine tools, is analyzed for linear, exponential, and parabolic acceleration/deceleration algorithms in case of circular interpolation. The analysis shows that the path error depends on the acceleration/deceleration routine and the servo control system. In experiments, the entire control algorithm including the proposed acceleration/deceleration algorithms is executed on the motion control system with a floating point digital signal processor(DSP) TMS320C30 as a CPU. The experimental results demonstrate that the proposed algorithms are very effective in controlling axes of motion of industrial robots or CNC machine tools with the desired characteristics.

  • PDF

Sub-micron Control Algorithm for Grinding and Polishing Aspherical Surface

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.386-393
    • /
    • 2008
  • A position control method for interpolating aspherical grinding and polishing tool path was reviewed and experimented in a nano precision machine. The position-base algorithm was reformed from the time-base algorithm, proposed in the previous study. The characteristics of the algorithm were in the velocity control loop with position feedback. The aspherical surface was divided by an interval at which each velocity and acceleration were calculated. The theoretical velocity was corrected by position error during processing. In the experiment, a machine was constructed and nano-scale linear encoders were installed at each axis. Relation between process parameters and the variation of position error was monitored and discussed. The best result from optimized parameters showed that the accuracy was 150nm and improved from the previous report.

Depth Control of Underwater Flight Vehicle Using Fuzzy Sliding Mode Controller and Neural Network Interpolator (퍼지 슬라이딩 모드 제어기 및 신경망 보간기를 이용한 Underwater Flight Vehicle의 심도 제어)

  • Kim, Hyun-Sik;Park, Jin-Hyun;Choi, Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.367-375
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, it needs robust performance which can get over modeling error, parameter variation and disturbance. Second, it needs accurate performance which have small overshoot phenomenon and steady state error to avoid colliding with ground surface or obstacles. Third, it needs continuous control input to reduce the acoustic noise and propulsion energy consumption. Finally, it needs interpolation method which can sole the speed dependency problem of controller parameters. To solve these problems, we propose a depth control method using Fuzzy Sliding Mode Controller with feedforward control-plane bias term and Neural Network Interpolator. Simulation results show the proposed method has robust and accurate control performance by the continuous control input and has no speed dependency problem.

  • PDF

Sub-pixel image interpolations for PIV

  • Kim Byoung Jae;Sung Hyung Jin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.47-55
    • /
    • 2004
  • Several interpolations for image deformation in PIV were evaluated. The tested interpolation methods are linear, quadratic, truncated sinc, windowed sinc, cubic, Lagrange, Gaussian $2^{nd}\;and\;6^{th}$ interpolators. Bias errors and random errors were evaluated in the range of $0\~3.0$ pixel uniform displacement using synthetic images. We also measured the time cost of each interpolator with respect to kernel size. The cubic interpolator with $6\times6$ kernel showed the best results in terms of the performance and time cost.

  • PDF

Architecture of Signal Processing Unit to Improve Range and Velocity Error for Automotive FMCW Radar (FMCW 레이더의 거리 및 속도 오차 향상을 위한 신호처리부 하드웨어 구조 제안)

  • Hyun, Eu-Gin;Lee, Jong-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.54-61
    • /
    • 2010
  • In this paper, we design the signal processing unit to effectively support the proposed algorithm for an automotive Frequency Modulation Continuous Wave(FMCW) radar. In the proposed method, we can obtain the distance and velocity with improved error depending on each range(long, middle, and short) of the target. Since a high computational capacity is required to obtain more accurate distance and velocity for target in near range, the proposed signal processing unit employs the time de-interleaving and the frequency interpolation method to overcome the limitation. Moreover, for real-time signal processing, the parallel architecture is used to extract simultaneously the distance and velocity in each range.

Study on gesture recognition based on IIDTW algorithm

  • Tian, Pei;Chen, Guozhen;Li, Nianfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6063-6079
    • /
    • 2019
  • When the length of sampling data sequence is too large, the method of gesture recognition based on traditional Dynamic Time Warping (DTW) algorithm will lead to too long calculation time, and the accuracy of recognition result is not high.Support vector machine (SVM) has some shortcomings in precision, Edit Distance on Real Sequences(EDR) algorithm does not guarantee that noise suppression will not suppress effective data.A new method based on Improved Interpolation Dynamic Time Warping (IIDTW)algorithm is proposed to improve the efficiency of gesture recognition and the accuracy of gesture recognition. The results show that the computational efficiency of IIDTW algorithm is more than twice that of SVM-DTW algorithm, the error acceptance rate is FAR reduced by 0.01%, and the error rejection rate FRR is reduced by 0.5%.Gesture recognition based on IIDTW algorithm can achieve better recognition status. If it is applied to unlock mobile phone, it is expected to become a new generation of unlock mode.

A Temporal Error Concealment based on Motion Vector Recovery for H.264/AVC

  • Wu, Jun;Liu, Xingang;Yoo, Kook-Yeol
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.341-344
    • /
    • 2007
  • In this paper, a new temporal error concealment method for the new coding standard H.264/AVC is presented, which uses the high correlation between the motion vectors of neighboring blocks. By using the motion vector of neighboring MB of the lost MB, the MV of the lost MB are recovered. It is shown that under FMO coding method of H.264/AVC, the proposed method increases PSNR gain up to 2.85dB compared to build-in algorithm in the H.264/AVC test model and 2.59dB compared to Lagrange interpolation.

Flood Runoff Analysis using TOPMODEL Linked with Muskingum Method - Anseong-cheon Watershed - (TOPMODEL과 Muskingum 기법을 연계한 안성천 유역의 홍수유출 분석)

  • Kwon, Hyung-Joong;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • In this study, TOPMODEL(TOPography based hydrologic MODEL) was tested linked with Muskingum river routing technique for $581.7km^2$ Anseong-cheon watershed. Linear trend surface interpolation was used to give flow direction for flat areas located in downstream watershed. MDF (multiple flow direction) algorithm was adopted to derive the distribution of ln(a/$tan{\beta}$) values of the model. Because the coarser DEM resolution, the greater information loss, the watershed was divided into subwaterhseds to keep DEM resolution, and the simulation result of the upstream watershed was transferred to downstream watershed by Muskingum techniques. Relative error of the simulated result by 500 m DEM resolution showed 27.2 %. On the other hand, the relative error of the simulated result of 300 m DEM resolution by linked 2 subwatersheds with Muskingum method showed 15.8 %.

  • PDF

Implementation of Precise Level Measurement Device using Zoom FFT (Zoom FFT를 이용한 정밀 레벨 측정 장치의 구현)

  • Ji, Suk-Joon;Lee, John-Tark
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.504-511
    • /
    • 2012
  • In this paper, level instrument is implemented using beat frequency for distance measurement which means the difference between Tx and Rx signal frequency from FMCW Radar Level Transmitter. Beat frequency is analyzed through Fast Fourier Transform of which frequency precision can be improved by applying Zoom FFT. Distance precision is improved from 146.5[mm] to 5[mm] using the advantage of Zoom FFT which can raise the frequency precision without changing the sampling frequency or FFT point number to be fixed in the beginning of designing signal processing. Also, measurement error can be reduced within 2[mm] by incresing the FFT points using the method of Spline interpolation. For verifying the effectiveness of this Zoom FFT to FMCW Radar Level Transmitter, test bench is made to measure the distance for every 1[mm] between 700[mm] and 2000[mm] and measurement error can be checked in the range of ${\pm}2$[mm].