• Title/Summary/Keyword: interplanetary trajectory design

Search Result 4, Processing Time 0.024 seconds

OPTIMAL TRAJECTORY DESIGN FOR HUMAN OUTER PLANET EXPLORATION

  • Park Sang-Young;Seywald Hans;Krizan Shawn A.;Stillwagen Frederic H.
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.285-289
    • /
    • 2004
  • An optimal interplanetary trajectory is presented for Human Outer Planet Exploration (HOPE) by using an advanced magnetoplasma spacecraft. A detailed optimization approach is formulated to utilize Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine with capabilities of variable specific impulse, variable engine efficiency, and engine on-off control. To design a round-trip trajectory for the mission, the characteristics of the spacecraft and its trajectories are analyzed. It is mainly illustrated that 30 MW powered spacecraft can make the mission possible in five-year round trip constraint around year 2045. The trajectories obtained in this study can be used for formulating an overall concept for the mission.

  • PDF

Preliminary Study on Interplanetary Trajectory Design using Invariant Manifolds of the Circular Restricted Three Body Problem (원형 제한 3체 문제의 불변위상공간을 이용한 행성간 궤적설계 기초 연구)

  • Jung, Okchul;Ahn, Sangil;Chung, Daewon;Kim, Eunkyou;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.692-698
    • /
    • 2015
  • This paper represents a trajectory design and analysis technique which uses invariant manifolds of the circular restricted three body problem. Instead of the classical patched conic method based on 2-body problem, the equation of motion and dynamical behavior of spacecraft in the circular restricted 3-body problem are introduced, and the characteristics of Lyapunov orbits near libration points and their invariant manifolds are covered in this paper. The trajectories from/to Lyapunov orbits are numerically generated with invariant manifolds in the Earth-moon system. The trajectories in the Sun-Jupiter system are also analyzed with various initial conditions in the boundary surface. These methods can be effectively applied to interplanetary trajectory designs.

LAUNCH OPPORTUNITIES FOR JUPITER MISSIONS USING THE GRAVITY ASSIST (행성 근접 통과를 이용한 목성 탐사선의 최적 발사 시기)

  • 송영주;유성문;박은서;박상영;최규홍;윤재철;임조령;김방엽;김한돌
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.153-166
    • /
    • 2004
  • Interplanetary trajectories using the gravity assists are studied for future Korean interplanetary missions. Verifications of the developed softwares and results were performed by comparing data from ESA's Mars Express mission and previous results. Among the Jupiter exploration mission scenarios, multi-planet gravity assist mission to Jupiter (Earth-Mars-Earth-Jupiter Gravity Assist, EMEJGA trajectory) requires minimum launch energy ($C_3$) of 29.231 $Km^2$/$S^2$ with 4.6 years flight times. Others, such as direct mission and single-planet(Mars) gravity assist mission, requires launch energy ($C_3$) of 75.656 $Km^2$/$S^2$ with 2.98 years flight times and 63.590 $Km^2$/$S^2$ with 2.33 years flight times, respectively. These results show that the planetary gravity assists can reduce launch energy, while EMEJGA trajectory requires the longer flight time than the other missions.

An Analytical Method for Low-Thrust and High-Thrust Orbital Transfers

  • Park, Sang-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.47-47
    • /
    • 2003
  • Analytical formulae are presented to approximate the evolution of the semi major axis, the maneuver time, and the final mass fraction for low thrust orbital transfers with circular initial orbit, circular target orbit, and constant thrust directed either always along or always opposite the velocity vector. For comparison, the associated results for high-thrust transfers, i.e. the two-impulse Hohmann transfer, are summarized. All results are implemented in a computer code designed to analyze planar planetary and interplanetary space missions. This implementation yields fast and reasonably accurate approximations to trajectory performance boundaries. Consequently, the approach can provide trajectory analysis for each spacecraft configuration during the conceptual space mission design phase. As an example, a mission from Low-Earth Orbit (LEO) to Jupiter's moon Europa is analyzed.

  • PDF