• 제목/요약/키워드: interplanetary magnetic fields

검색결과 13건 처리시간 0.017초

Polar rain flux variations in northern hemisphere observed by STSAT_1 with IMF geometry

  • Hong, Jin-Hy;Lee, J.J.;Min, K.W.;Kim, K.H.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.25.2-25.2
    • /
    • 2008
  • Polar rain is a spatially uniform precipitation of electrons with energies around 100eV that penetrate into the polar cap region where geomagnetic field lines are connected to the Interplanetary Magnetic Fields (IMF). Since their occurrences depend on the IMF sector polarity, they are believed to originate from the field aligned component of the solar wind. However, statistically direct correlation between polar rain and solar wind has not been shown. In this presentation, we examined specifically the IMF strength influence on the polar rain flux variation by classifying of IMF sector polarities. For this study, we employed the polar rain flux data measured by STSAT-1 and compared them with the solar wind parameters obtained from the WIND and ACE satellites. We found the direct mutuality between polar rain flux and IMF strength with correlation coefficient above 0.5. This proportional tendency appears stronger when the northern hemisphere is in the away sector of the IMF, which could be associated with a favorable geometry for magnetic reconnection. Simple particle trajectory simulation clearly shows why polar rain intensity depends on the IMF sector polarity. These results are consistent with the direct entry model of Fairfield et al.(1985), while low correlation coefficient with solar wind density, the similarity between slops of both energy spectra shows that transport process occur without acceleration.

  • PDF

NCAR-TIEGCM을 이용한 이온권-열권의 상호작용 연구: 행성간 자기장(IMF)에 의존적인 이온권 플라즈마대류의 고위도 하부 열권 바람에 대한 영향 (IONOSPHERE-THERMOSPHERE INTERACTIONS BASED ON NCAR-TIEGCM: THE INFLUENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF)-DEPENDENT IONOSPHERIC CONVECTION ON THE HIGH-LATITUDE LOWER THERMOSPHERIC WIND)

  • 곽영실;안병호;원영인
    • Journal of Astronomy and Space Sciences
    • /
    • 제21권1호
    • /
    • pp.11-28
    • /
    • 2004
  • 고위도의 이온권 전기장이 열권 역학에 어떻게 영향을 주는지를 이해하기 위하여, 미 국립대기연구소(NCAR)의 열권-이온권 전기역학적 대순환 모델(TIEGCM)을 이용하여 고위도 하부 열권의 바람을 연구하였다. 1992-1993년 기간의 남반구 여름철 조건에 대해 모델을 가동하였으며, 행성간 자기장(IMF)에 좌우되는 이온권 대류가 바람에 미치는 영향을 살펴보기 위하여 IMF와 열권 바람과의 관련성을 또한 조사하였다. 비록 모델로부터 추정된 바람의 세기가 WINDII관측치에 비해 대체적으로 약하긴 하지만, 바람의 형태는 잘 일치하였다. 고위도 여름철 열권 바람에 대한 이온권 대류의 영향이 105km까지 나타나는 것으로 확인되었다. IMF$\neq$O와 IMF=0인 경우의 바람차이(difference wind)는 IMF$B_y$성분이 양과 음일 때 각각 시계방향과 반시계방향의 강한 소용돌이 형태를 보이며, 이 소용돌이 양상은 고도 105km까지 나타났다. IMF $B_z$가 양인 경우의 바람차이는 극관에 아주 국한되는 반면, IMF $B_z$가 음일 경우에는 아오로라(subauroral) 위도까지 확장되었다. IMF $B_z$에 좌우되는 일주풍(diurnal wind) 성분과 이온권 대류 성분 사이에는 뚜렷한 상관관개를 보이며, 그 관련성은 고도 108km까지 나타나고, 그때 일주풍은 강한 회 전성을 나타냈다 하부 열권의 여름철 동서성분바람의 자기지방시(MLT) 평균에 대한 IMF $B_y$ 영향은 고위도에서 상당히 크며, 최대 풍속은 지자기 위도 $77^{\circ}$부근의 고도 130km에서 약$60ms^-1$로 나타났다.

Do Inner Planets Modulate the Space Environment of the Earth?

  • Kim, Jung-Hee;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권1호
    • /
    • pp.7-13
    • /
    • 2014
  • Variabilities in the solar wind cause disturbances throughout the heliosphere on all temporal and spatial scales, which leads to changeable space weather. As a view of space weather forecasting, in particular, it is important to know direct and indirect causes modulating the space environment near the Earth in advance. Recently, there are discussions on a role of the interaction of the solar wind with Mercury in affecting the solar wind velocity in the Earth's neighborhood during its inferior conjunctions. In this study we investigate a question of whether other parameters describing the space environment near the Earth are modulated by the inner planets' wake, by examining whether the interplanetary magnetic field and the proton density in the solar wind observed by the Advanced Composition Explorer (ACE) spacecraft, and the geomagnetic field via the Dst index and Auroral Electrojet index (AE index) are dependent upon the relative position of the inner planets. We find there are indeed apparent variations. For example, the mean variations of the geomagnetic fields measured in the Earth's neighborhood apparently have varied with a timescale of about 10 to 25 days. Those variations in the parameters we have studied, however, turn out to be a part of random fluctuations and have nothing to do with the relative position of inner planets. Moreover, it is found that variations of the proton density in the solar wind, the Dst index, and the AE index are distributed with the Gaussian distribution. Finally, we point out that some of properties in the behavior of the random fluctuation are to be studied.