• 제목/요약/키워드: internet addition

검색결과 3,000건 처리시간 0.03초

다계층 이원 네트워크를 활용한 사용자 관점의 이슈 클러스터링 (User-Perspective Issue Clustering Using Multi-Layered Two-Mode Network Analysis)

  • 김지은;김남규;조윤호
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.93-107
    • /
    • 2014
  • 대부분의 인터넷 쇼핑몰은 자사 고객의 관심 분야를 파악하고 이를 상품 추천에 효과적으로 활용하기 위해 많은 노력을 기울이고 있다. 하지만 고객이 회원 가입 시 직접 입력한 개인 정보는 신뢰하기가 어렵고, 고객의 구매 패턴을 통해 파악한 관심 분야 정보는 자사 사이트 내에 진입한 이후에만 보인 한정된 패턴이라는 측면에서 해당 고객의 다양한 관심분야를 제대로 나타낸다고 보기 어렵다. 이러한 한계를 극복하기 위해 본 연구에서는 고객의 평소 인터넷 사용 기록을 통해 최근 방문 사이트들의 주제를 분석함으로써, 고객의 실제 관심 분야를 파악할 수 있는 방안을 제시하였다. 또한 토픽 분석을 통해 각 사이트의 주제를 도출하고 도출된 주제를 다시 동시 방문자 관점에서 군집화 함으로써, 고객 관점에서 의미가 있는 상위 수준의 새로운 테마를 발굴하기 위한 방법론을 제안하였다. 연구의 특징은 유사주제 중심의 군집화라는 기존 연구와는 달리 사용자 관점의 관심주제 중심 군집화라 할 수 있다. 향후 사용자 중심의 카테고리 설계를 비롯한 새로운 관점의 고객군 정의 등 보다 높은 차원의 마케팅 전략 수립에 활용이 가능할 것으로 기대된다. 사용자 관점의 이슈 군집화 과정은 크롤링, 토픽 분석, 액세스 패턴 분석, 네트워크 병합, 네트워크 변환 및 군집화와 같은 여섯 가지 주요단계로 구성되어있다. 이를 위해 텍스트 마이닝과 소셜 네트워크 분석 기법을 활용한 비정형 텍스트를 기반으로한 빅데이터의 활용 방법을 모색하였다. 제안 방법론의 실무 적용 가능성을 평가하기 위해, 국내 최대 포털 뉴스 사이트의 방문자 2,177명의 1년간 방문 기록과 뉴스기사 대한 분석을 수행하고 그 결과를 요약하여 제시하였다.

비정형 빅데이터의 실시간 복합 이벤트 탐지를 위한 기법 (The Method for Real-time Complex Event Detection of Unstructured Big data)

  • 이준희;백성하;이순조;배해영
    • Spatial Information Research
    • /
    • 제20권5호
    • /
    • pp.99-109
    • /
    • 2012
  • 최근 소셜 미디어의 발달과 스마트폰의 확산으로 SNS(Social Network Service)가 활성화가 되면서 데이터양이 폭발적으로 증가하였다. 이에 맞춰 빅데이터 개념이 새롭게 대두되었으며, 빅데이터를 활용하기 위한 많은 방안이 연구되고 있다. 여러 기업이 보유한 빅데이터의 가치창출을 극대화하기 위해 기존 데이터와의 융합이 필요하며, 물리적, 논리적 저장구조가 다른 이기종 데이터 소스를 통합하고 관리하기 위한 시스템이 필요하다. 빅데이터를 처리하기 위한 시스템인 맵리듀스는 분산처리를 활용하여 빠른게 데이터를 처리한다는 이점이 있으나 모든 키워드에 대해 시스템을 구축하여 저장 및 검색 등의 과정을 거치므로 실시간 처리에 어려움이 따른다. 또한, 이기종 데이터를 처리하는 구조가 없어 복합 이벤트를 처리하는데 추가 비용이 발생할 수 있다. 이를 해결하는 방안으로 기존에 연구된 복합 이벤트 처리 시스템을 활용하여 실시간 복합 이벤트 탐지를 위한 기법을 제안하고자 한다. 복합 이벤트 처리 시스템은 서로 다른 이기종 데이터 소스로부터 각각의 데이터들을 통합하고 이벤트들의 조합이 가능하며 스트림 데이터를 즉시 처리할 수 있어 실시간 처리에 유용하다. 그러나 SNS, 인터넷 기사 등 텍스트 기반의 비정형 데이터를 텍스트형으로 관리하고 있어 빅데이터에 대한 질의가 요청될 때마다 문자열 비교를 해야 하므로 성능저하가 발생할 여지가 있다. 따라서 복합 이벤트 처리 시스템에서 비정형 데이터를 관리하고 질의처리가 가능하도록 문자열의 논리적 스키마를 부여하고 데이터 통합 기능을 제안한다. 그리고 키워드 셋을 이용한 필터링 기능으로 문자열의 키워드를 정수형으로 변환함으로써 반복적인 비교 연산을 줄인다. 또한, 복합 이벤트 처리 시스템을 활용하면 인 메모리(In-memory)에서 실시간 스트림 데이터를 처리함으로써 디스크에 저장하고 불러들이는 시간을 줄여 성능 향상을 가져온다.

링크드 데이터를 이용한 인터랙티브 요리 비디오 질의 서비스 시스템 (An Interactive Cooking Video Query Service System with Linked Data)

  • 박우리;오경진;홍명덕;조근식
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.59-76
    • /
    • 2014
  • 스마트 미디어 장치의 발달로 인하여 시공간적인 제약이 없이 비디오를 시청 가능한 환경이 제공됨에 따라 사용자의 시청행태가 수동적인 시청에서 능동적인 시청으로 계속해서 변화하고 있다. 사용자는 비디오를 시청하면서 비디오를 볼 뿐 아니라 관심 있는 내용에 대한 세부적인 정보를 검색한다. 그 결과 사용자와 미디어 장치간의 인터랙션이 주요 관심사로 등장하였다. 이러한 환경에서 사용자들은 일방적으로 정보를 제공해주는 것보다는 자신이 원하는 정보를 웹 검색을 통해 사용자 스스로 정보를 찾지 않고, 쉽고 빠르게 정보를 얻을 수 있는 방법의 필요성을 인식하게 되었으며 그에 따라 인터랙션을 직접 수행하는 것에 대한 요구가 증가하였다. 또한 많은 정보의 홍수 속에서 정확한 정보를 얻는 것이 중요한 이슈가 되었다. 이러한 사용자들의 요구사항을 만족시키기 위해 사용자 인터랙션 기능을 제공하고, 링크드 데이터를 적용한 시스템이 필요한 상황이다. 본 논문에서는 여러 분야 중에서 사람들이 가장 관심 있는 분야중 하나인 요리를 선택하여 문제점을 발견하고 개선하기 위한 방안을 살펴보았다. 요리는 사람들이 지속적인 관심을 갖는 분야이다. 레시피, 비디오, 텍스트와 같은 요리에 관련된 정보들이 끊임없이 증가하여 빅 데이터의 한 부분으로 발전하였지만 사용자와 요리 콘텐츠간의 인터랙션을 제공하는 방법과 기능이 부족하고, 정보가 부정확하다는 문제점을 가지고 있다. 사용자들은 쉽게 요리 비디오를 시청할 수 있지만 비디오는 단 방향으로만 정보를 제공하기 때문에 사용자들의 요구사항을 충족시키기 어렵고, 검색을 통해 정확한 정보를 얻는 것이 어렵다. 이러한 문제를 해결하기 위하여 본 논문에서는 요리 비디오 시청과 동시에 정보제공을 위한 UI(User Interface), UX(User Experience)를 통해 사용자의 편의성을 고려한 환경을 제시하고, 컨텍스트에 맞는 정확한 정보를 제공하기 위해 링크드 데이터를 이용하여 사용자와 비디오 간에 인터랙션을 위한 요리보조 서비스 시스템을 제안한다.

지능적인 RFID 미들웨어 시스템을 위한 적응형 윈도우 슬라이딩 기반의 유연한 데이터 정제 (A Smoothing Data Cleaning based on Adaptive Window Sliding for Intelligent RFID Middleware Systems)

  • 신동천;오동옥;류승완;박세권
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.1-18
    • /
    • 2014
  • RFID는 유비쿼터스 환경의 다양한 응용분야에서 기본적인 기술로 사용되어 왔다. 특히, 사물 인터넷을 위한 향후 RFID 기술의 폭 넓은 활용의 장애물중의 하나는 태그 리더기에 의한 RFID 데이터의 근본적인 비 신뢰성이다. 특히, 읽기 손실과 잘못된 읽기 같은 읽기오류 문제는 RFID 시스템이 적절히 처리해야 할 필요가 있다. 왜냐하면, 미들웨어 시스템이 전달한 오류 데이터는 궁극적으로 응용 서비스의 품질을 저하시킬 수 있기 때문이다. 따라서 높은 품질의 서비스를 위해서 지능형 RFID 미들웨어 시스템은 응용에 깨끗한 데이터를 전달하기 위해 읽기오류를 상황에 따라 적절하게 처리하여야 한다. 읽기 오류를 해결하기 위한 보편적인 방법 중의 하나는 슬라이딩 윈도우 필터의 사용이다. 따라서 최적의 윈도우 크기를 결정하는 것은 특히 모바일 환경에서는 읽기 오류를 줄이기 위해 쉽지 않은 중요한 일이다. 본 논문에서는 지능형 윈도우 크기 조정을 통해 읽기 오류를 줄이기 위하여 단일 태그를 위한 RFID 데이터 정제 방안을 제안한다. 이항 샘플링을 기반으로 한 기존 연구와 달리, 본 논문에서는 가중치 평균을 사용한다. 이는 최근의 읽기가 더 정확한 현재의 태그 전이를 나타낼 수 있으므로 과거와 현재의 읽기를 차별화하는 일이 필요하다는 것에 기반을 두고 있다. 가중치 평균을 사용하므로 이질적인 읽기 패턴을 갖는 모바일 환경에서도 효율적으로 적응하여 윈도우 크기를 동적으로 조정할 수 있게 된다. 뿐만 아니라, 윈도우 내의 읽음 패턴과 감소되는 윈도우 크기의 효과를 분석함으로서 더욱 효율적이고 정확한 크기 조정 결정을 할 수 있도록 한다. 제안한 방안을 사용하면 RFID 미들웨어 시스템이 응용에 좀 더 정확하고 무결점의 데이터를 제공함으로써 본래의 응용 서비스 품질을 보장할 수 있도록 한다는 궁극적인 목적을 달성할 수 있을 것으로 기대한다.

다중 지문 시퀀스를 이용한 스마트폰 보안 (Smartphone Security Using Fingerprint Password)

  • 배경율
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.45-55
    • /
    • 2013
  • 최근 모바일 디바이스와 휴대기기의 발달로 원격접속이 늘어남에 따라 보안의 중요성도 점차 증가되었다. 그러나 기존 패스워드나 패턴과 같은 보안 프로그램은 지나치게 단순할 뿐 아니라 다른 사용자가 쉽게 취득하여 악용할 수 있다는 단점이 있다. 생체인식을 활용한 보안 시스템은 보안성이 강화 되었지만 위조 및 변조가 가능하기 때문에 완전한 해결책을 제시하지 못한다. 본 논문에서는 이러한 문제점을 해결하기 위해 지문인식과 패스워드를 결합하여 보안성을 향상시킬 수 있는 방안을 연구하였다. 제안한 시스템은 하나의 지문이 아니라 다수의 지문을 이용하는 방법으로, 사용자가 패스워드를 입력할 때 여러 지문 중에서 정확한 지문의 순서를 제공하도록 한다. 오늘날 스마트폰은 패스워드나 패턴, 지문을 이용할 수 있지만 패스워드의 강도가 낮거나 패턴이 쉽게 노출되는 등의 문제가 있다. 반면에 제안한 시스템은 다양한 지문의 이용과 패스워드의 연계, 또는 다른 생체인식 시스템과 연결함으로써 매우 강력한 보안장치가 될 수 있다.

정보보호 대책의 성능을 고려한 투자 포트폴리오의 게임 이론적 최적화 (Game Theoretic Optimization of Investment Portfolio Considering the Performance of Information Security Countermeasure)

  • 이상훈;김태성
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.37-50
    • /
    • 2020
  • 사물 인터넷, 빅데이터, 클라우드, 인공지능 등 다양한 정보통신기술이 발전하면서, 정보보호의 대상이 증가하고있다. 정보통신기술의 발전에 비례해서 정보보호의 필요성이 확대되고 있지만, 정보보호 투자에 대한 관심은 저조한 상황이다. 일반적으로 정보보호와 관련된 투자는 효과를 측정하기 어렵기 때문에 적절한 투자가 이루어지지 않고 있으며, 대부분의 조직은 투자 규모를 줄이고 있다. 또한 정보보호 대책의 종류와 특성이 다양하기 때문에 객관적인 비교와 평가가 힘들고, 객관적인 의사결정 방법이 부족한 실정이다. 하지만 조직의 발전을 위해서는 정보보호와 관련된 정책과 의사결정이 필수적이며 적정 수준의 투자와 이에 대한 투자 효과를 측정 할 필요가 있다. 이에 본 연구에서는 게임 이론을 이용하여 정보보호 대책 투자 포트폴리오를 구성하는 방법을 제안하고 선형계획법을 이용하여 최적 방어 확률을 도출한다. 2인 게임 모형을 이용하여 정보보호 담당자와 공격자를 게임의 경기자로 구성한 뒤, 정보보호 대책을 정보보호 담당자의 전략으로, 정보보호 위협을 공격자의 전략으로 각각 설정한다. 게임 모형은 경기자의 보수의 합이 0인 제로섬 게임을 가정하고, 여러개의 전략 사이에서 일정한 확률 분포에 따라 전략을 선택하는 혼합 전략 게임의 해를 도출한다. 여러 종류의 위협이 존재하는 현실에서는 한 개의 정보보호 대책만으로 일정 수준 이상의 방어가 힘들기 때문에, 다수의 정보보호 대책을 고려해야한다. 따라서 다수의 정보보호 위협에 따른 정보보호 대책이 배치된 환경에서 정보보호 대책의 방어 비율을 이용하여 정보보호 대책 투자 포트폴리오를 산출한다. 또한 최적화된 포트폴리오를 이용하여 방어 확률을 최대화하는 게임 값을 도출한다. 마지막으로 정보보호 대책의 실제 성능 데이터를 이용하여 수치 예제를 구성하고, 제안한 게임 모델을 적용하고 평가한다. 본 연구에서 제시한 최적화 모델을 이용하면 조직의 정보보호 담당자는 정보보호 대책의 방어 비율을 고려하여 정보보호 대책의 투자 가중치를 구할 수 있고, 효과적인 투자 포트폴리오를 구성하여 최적의 방어 확률을 도출 할 수 있을 것이다.

효과적인 인터랙티브 비디오 저작을 위한 얼굴영역 기반의 어노테이션 방법 (Annotation Method based on Face Area for Efficient Interactive Video Authoring)

  • 윤의녕;가명현;조근식
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.83-98
    • /
    • 2015
  • TV를 보면서 방송에 관련된 정보를 검색하려는 많은 시청자들은 정보 검색을 위해 주로 포털 사이트를 이용하고 있으며, 무분별한 정보 속에서 원하는 정보를 찾기 위해 많은 시간을 소비하고 있다. 이와 같은 문제를 해결하기 위한 연구로써, 인터랙티브 비디오에 대한 연구가 활발하게 진행되고 있다. 인터랙티브 비디오는 일반적인 비디오에 추가 정보를 갖는 클릭 가능한 객체, 영역, 또는 핫스팟을 동시에 제공하여 사용자와 상호작용이 가능한 비디오를 말한다. 클릭 가능한 객체를 제공하는 인터랙티브 비디오를 저작하기 위해서는 첫째, 증강 객체를 생성하고, 둘째, 어노테이터가 비디오 위에 클릭 가능한 객체의 영역과 객체가 등장할 시간을 지정하고, 셋째, 객체를 클릭할 때 사용자에게 제공할 추가 정보를 지정하는 과정을 인터랙티브 비디오 저작 도구를 이용하여 수행한다. 그러나 기존의 저작 도구를 이용하여 인터랙티브 비디오를 저작할 때, 객체의 영역과 등장할 시간을 지정하는데 많은 시간을 소비하고 있다. 본 논문에서는 이와 같은 문제를 해결하기 위해 유사한 샷들의 모임인 샷 시퀀스의 모든 샷에서 얼굴 영역을 검출한 샷 시퀀스 메타데이터 모델과 객체의 어노테이션 결과를 저장할 인터랙티브 오브젝트 메타데이터 모델, 그리고 어노테이션 후 발생될 수 있는 부정확한 객체의 위치 문제를 보완할 사용자 피드백 모델을 적용한 얼굴영역을 기반으로 하는 새로운 형태의 어노테이션 방법을 제안한다. 마지막으로 제안한 어노테이션 방법의 성능을 검증하기 위해서 인터랙티브 비디오 저작 시스템을 구현하여 기존의 저작도구들과 저작 시간을 비교하였고, 사용자 평가를 진행 하였다. 비교 분석 결과 평균 저작 시간이 다른 저작 도구에 비해 2배 감소하였고, 사용자 평가 결과 약 10% 더 유용한다고 평가 되었다.

전시 공간에서 다중 인터랙션을 위한 개인식별 위치 측위 기술 연구 (The Individual Discrimination Location Tracking Technology for Multimodal Interaction at the Exhibition)

  • 정현철;김남진;최이권
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.19-28
    • /
    • 2012
  • 전시 공간에서 관객들의 반응에 따른 다중 인터랙션 서비스를 제공하기 위해서는 관람객의 정확한 위치 및 이동 경로를 얻기 위한 위치 추적 기술이 필요하다. 실외 환경에서 위치 추적을 위한 기술로 GPS가 현재 널리 사용되고 있다. GPS는 빠른 속도로 이동하는 이동체의 위치를 실시간으로 파악할 수 있으므로 위치 추적 서비스(Location Tracking Service)를 요구하는 분야에서 중요한 기술로 활용된다. 하지만 위성을 이용한 위치 추적 기법을 사용하기 때문에 위성 신호를 잡을 수 없는 실내에서는 사용할 수 없다는 단점이 있다(Per Enge et al., 1996). 위와 같은 이유로 Wi-Fi 위치 측위 기술을 비롯하여 ZigBee, UWB, RFID 등의 초단거리 통신 기술 등 다양한 형태의 실내 위치 측위 연구가 진행되고 있다(Schiler and Voisad, 2004). 하지만 이러한 기술들은 전시 공간에서 얻고자 하는 위치정보의 밀도가 높아질수록 구현의 난이도가 높아지고 구축 및 관리 비용도 커지며 구축 가능한 환경이 제약된다는 단점이 있다. 이와 같은 문제를 해결하기 위하여 본 논문에서는 실내 환경에서 스마트폰을 이용한 Wi-Fi 위치 측위 데이터를 기반으로 하여 3D카메라의 Depth Map 정보와의 매핑을 통해 사용자들을 식별하고 위치를 추적하는 시스템을 제안한다.

연관규칙 마이닝에서의 동시성 기준 확장에 대한 연구 (An Investigation on Expanding Co-occurrence Criteria in Association Rule Mining)

  • 김미성;김남규;안재현
    • 지능정보연구
    • /
    • 제18권1호
    • /
    • pp.23-38
    • /
    • 2012
  • 온라인 쇼핑몰은 인터넷을 통해 손쉽게 접근이 가능하기 때문에, 최초 구매의사가 발생한 시점으로부터 이에 대한 실제 구매가 실현되기까지의 기간이 오프라인 쇼핑몰에 비해 비교적 짧게 나타난다. 즉 오프라인 쇼핑몰의 경우 구매희망 물품을 바로 구매하기 보다는 몇 개의 물품들을 모아서 구매하는 행태가 일반적이다. 하지만, 인터넷 쇼핑몰의 경우 단 하나의 물품만을 포함하고 있는 주문이 전체 주문의 절반 이상을 차지한다. 따라서 온라인 쇼핑몰 데이터의 장바구니 분석에 전통적 데이터마이닝 기법을 그대로 적용할 경우, Null Transaction의 수가 지나치게 많음으로 인해 합리적 수준의 지지도(Support)를 만족시키는 규칙을 찾는 것이 매우 어렵게 된다. 이러한 이유로 온라인 데이터를 사용한 많은 연구는 동시성 기준을 여러 방법으로 확장하여 사용하였는데, 이들 동시성 기준은 명확한 근거나 합의 없이 연구자의 상황에 따라 임의로 선택된 측면이 있다. 따라서 본 연구에서는 온라인 마켓 분석에 적용되는 구매의 동시성 기준을 정확도 측면에서 평가함으로써, 구매의 동시성 기준 선정을 위한 근거를 제시하고자 한다. 또한 동시성 기준의 정확도가 고객의 평균 구매간격에 따라 상이하게 나타나는 것을 파악하여, 향후 고객의 특성에 따른 차별화된 추천 시스템 구축을 위한 기본 방향을 제시하고자 한다. 이를 위해 국내 대형 인터넷 쇼핑몰의 최근 2년간 실제 거래 내역을 대상으로 실험을 수행하였으며, 실험 결과 단골 고객의 구매 추천을 위한 분석의 경우 추천 범위와 분석 데이터의 동시성 기준을 맞추어 연관규칙을 도출하는 것이 바람직하며, 비단골 고객의 경우 대부분의 추천 범위에 대해서 분석 데이터의 동시성 기준을 비교적 길게 설정하여 연관규칙을 도출하는 것이 바람직한 것으로 나타났다.

웹툰 콘텐츠 추천을 위한 소비자 감성 패턴 맵 개발 (Development of Customer Sentiment Pattern Map for Webtoon Content Recommendation)

  • 이준식;박도형
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.67-88
    • /
    • 2019
  • 웹툰은 인터넷의 특징적 요소들을 활용하여 제작되는 만화 콘텐츠를 온라인 환경에서 소비 가능한 형태로 유통하는 한국형 디지털 만화 플랫폼이다. 최근 웹툰 산업의 급격한 성장과 함께 웹툰 콘텐츠의 공급량이 기하급수적으로 증가함에 따라, 효과적인 웹툰 콘텐츠 추천 방안의 필요성이 커지고 있다. 웹툰은 회화적 요소와 문학적 요소, 디지털 요소의 복합적 산물로서, 독자로 하여금 재미를 느끼게 하고 웹툰이 연출하는 상황에 이입·공감하게 하는 등 소비자의 감성을 자극하는 디지털 콘텐츠 상품이다. 따라서 웹툰이 소비자에게 전달하는 감성이 소비자가 웹툰을 선택함에 있어 중요한 기준으로 작용할 것이라 기대할 수 있다. 본 연구는 기존에 충분히 논의되지 않았던 소비자 감성을 중심으로, 웹툰 콘텐츠의 효과적인 추천을 지원할 수 있는 소비자 감성 패턴맵의 개발을 목적으로 한다. 본 연구의 수행을 위해 '네이버 웹툰' 플랫폼에서 서비스되는 200개 작품에 대한 메타데이터와 소비자 감성어휘 정보를 수집하였다. 분석 목적에 부합하지 않는 작품을 제외한 127개 작품에 대해 488개의 감성어휘가 수집되었다. 이후 수집된 감성어휘들 간 유사감성 통합, 중복감성 배제 과정을 Bottom-up 접근으로 수행하여 총 63개 감성유형으로 축소된 웹툰 특화 감성지표를 구축하였다. 구축한 감성지표에 대한 탐색적 요인분석을 수행하여 웹툰 유형을 분류할 수 있는 3개의 중요 차원을 도출하고, 이를 기준으로 K-Means 클러스터링을 수행하여 전체 웹툰을 4개 유형으로 분류하였다. 각각의 유형에 대해 웹툰-감성 2-Mode 네트워크를 구축하여 웹툰 유형별로 나타나는 감성 패턴의 특징을 살펴보았으며, 프로파일링 분석을 통해 웹툰 유형별 인사이트와 실무적으로 의미 있는 전략적 시사점을 도출할 수 있었다. 본 연구의 결과를 통해 웹툰의 추천 및 분류의 영역에서 소비자 감성의 활용 가능성을 확인하고, 웹툰 생태계 내 구성원들이 소비자를 보다 잘 이해하고 전략을 수립할 수 있도록 돕는 가이드라인을 제시하였다는 점에서 의의가 있다.