• Title/Summary/Keyword: internal wave generation

Search Result 47, Processing Time 0.026 seconds

Study on Flow Characteristics in an Augmentation Channel of a Direct Drive Turbine for Wave Power Generation Using CFD

  • Prasad, Deepak;Zullah, Mohammed Asid;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.630-631
    • /
    • 2009
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Apart from wind and solar, ocean holds tremendous amount of untapped energy in forms such as geothermal vents, tides and waves. The current study looks at generating power using waves and the focus is on the primary energy conversion (first stage conversion) of incoming waves for two different models. Observation of flow characteristics, pressure and the velocity in the augmentation channel as well as the front guide nozzle are presented in the paper. A numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The augmentation channel consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. The analysis was performed using the commercial CFD code.

  • PDF

Comparison of Parallel Computation Performances for 3D Wave Propagation Modeling using a Xeon Phi x200 Processor (제온 파이 x200 프로세서를 이용한 3차원 음향 파동 전파 모델링 병렬 연산 성능 비교)

  • Lee, Jongwoo;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.4
    • /
    • pp.213-219
    • /
    • 2018
  • In this study, we simulated 3D wave propagation modeling using a Xeon Phi x200 processor and compared the parallel computation performance with that using a Xeon CPU. Unlike the 1st generation Xeon Phi coprocessor codenamed Knights Corner, the 2nd generation x200 Xeon Phi processor requires no additional communication between the internal memory and the main memory since it can run an operating system directly. The Xeon Phi x200 processor can run large-scale computation independently, with the large main memory and the high-bandwidth memory. For comparison of parallel computation, we performed the modeling using the MPI (Message Passing Interface) and OpenMP (Open Multi-Processing) libraries. Numerical examples using the SEG/EAGE salt model demonstrated that we can achieve 2.69 to 3.24 times faster modeling performance using the Xeon Phi with a large number of computational cores and high-bandwidth memory compared to that using the 12-core CPU.

Development of Complementary Mild-slope Equation for Stream Function Over Permeable Bed (투수층에 적용 가능한 흐름함수방식의 확장형 완경사방정식의 개발)

  • Kim, Gunwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.758-765
    • /
    • 2016
  • In this study, wave damping due to a permeable bed of finite depth was modelled using a complementary mild-slope equation for stream function. The energy dissipating term in the mild-slope equation was presented in terms of stream function. In order to prevent re-reflection of reflected waves along the outer boundary, a delta-function-shaped source function was derived to generate a wave in a computational domain. Numerical experiments were conducted to measure the reflection coefficient of waves over a planar slope for various incident wave periods. The numerical result of the proposed model was compared with that of an integral equation method, showing good agreement in general. However, the proposed model showed relatively higher transmission rate for the larger permeability and the longer wavelength.

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho Jai-Wan;Seo Yong-Chil;Jung Seung-Ho;Kim Seungho;Jung Hyun-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.68-71
    • /
    • 2006
  • Active thermography has been used for several years in the field of remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements are performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

Internal Tides in an Axially Symmetric Basin (원통형 분지내의 내부조석)

  • LIM, KEUN-SIK
    • 한국해양학회지
    • /
    • v.26 no.2
    • /
    • pp.133-143
    • /
    • 1991
  • A new internal tide model for solving flow fields and wave generations is presented here which seems to be simple to apply, converges fast and yields accurate results. The new method employs a representation of vertical structure using dynamic basis functions which depend on the stratifications. The present method has been applied to the East Sea. For a constant Brunt-Vaisala case, weak baroclinic currents are generated over the entire continertal slop: however, results using a more realistic stratification can be described using only the lowest modes and exhibit much more realistic behavior. Baroclinic tide generation is confined to the upper slope. Model results for the East sea show the semi-diurnal baroclinic modes contain almost all the energy transferred from the barotropic mode.

  • PDF

Design of a High-Level Synthesis System for Automatic Generation of Pipelined Datapath (파이프라인 데이터패스 자동 생성을 위한 상위수준 합성 시스템의 설계)

  • 이해동;황선영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.3
    • /
    • pp.53-67
    • /
    • 1994
  • This paper describes the design of a high-level synthesis system. SODAS-VP. which automatically generates hardwares executing operation sequences in pipelined fashion.Target architecture and clocking schemes to drive pipelined datapath are determined, and the handling of pipeline hazards which degrade the performance of pipeline is considered. Partitioning of an operation into load, operation, and store stages, each of which is executed in partitiones control step, is performend. Pipelinecl hardware is generated by handling pipeline hazards with internal forwarding or delay insertion techniques in partitioning process and resolving resource conflicts among the partitioned control steps with similarity measure as a priority function in module allocation process. Experimental results show that SODAS-VP generates hardwares that execute faster than those generated by HAL and ALPS systems. SODAS-VP brings improvement in execution speed by 17.1% and 7.4% comparing with HAL and ALPS systems for a MCNC benchmark program, 5th order elliptical wave filter,respectively.

  • PDF

Ultrasonic Wave Propagation Analysis for Damage Detection in Heterogeneous Concrete Materials (콘크리트 내부결함 탐지를 위한 초음파 전파 해석)

  • Jung, Hwee Kwon;Rhee, Inkyu;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.225-235
    • /
    • 2020
  • Ultrasonic investigation of damage detection has been widely used for non-destructive testing of various concrete structures. This study focuses on damage detection analysis with the aid of wave propagation in two-phase composite concrete with aggregate (inclusion) and mortar (matrix). To fabricate a realistic simulation model containing a variety of irregular aggregate shapes, the mesh generation technique using an image processing technique was proposed. Initially, the domains and boundaries of the aggregates were extracted from the digital image of a typical concrete cut-section. This enables two different domains: aggregates and mortar in heterogeneous concrete sections, and applied the grids onto these domains to discretize the model. Subsequently, finite element meshes are generated in terms of spatial and temporal requirements of the model size. For improved analysis results, all meshes are designed to be quadrilateral type, and an additional process is conducted to improve the mesh quality. With this simulation model, wave propagation analyses were conducted with a central frequency of 75 kHz of the Mexican hat incident wave. Several void damages, such as needle-shaped cracks and void-shaped holes, were artificially introduced in the model. Finally, various formats of internal damage were detected by implementing energy mapping based signal processing.

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa$-$\omega$ turbulence model. The flow field is observed to oscillate in the shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}-{\varepsilon}$ turbulence model. The flow field is observed to oscillate in the "shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

Overview of new developments in satellite geophysics in 'Earth system' research

  • Moon Wooil M.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.3-17
    • /
    • 2004
  • Space-borne Earth observation technique is one of the most cost effective and rapidly advancing Earth science research tools today and the potential field and micro-wave radar applications have been leading the discipline. The traditional optical imaging systems including the well known Landsat, NOAA - AVHRR, SPOT, and IKONOS have steadily improved spatial imaging resolution but increasing cloud covers have the major deterrent. The new Earth observation satellites ENVISAT (launched on March 1 2002, specifically for Earth environment observation), ALOS (planned for launching in 2004 - 2005 period and ALOS stands for Advanced Land Observation Satellite), and RADARSAT-II (planned for launching in 2005) all have synthetic aperture radar (SAR) onboard, which all have partial or fully polarimetric imaging capabilities. These new types of polarimetric imaging radars with repeat orbit interferometric capabilities are opening up completely new possibilities in Earth system science research, in addition to the radar altimeter and scatterometer. The main advantage of a SAR system is the all weather imaging capability without Sun light and the newly developed interferometric capabilities, utilizing the phase information in SAR data further extends the observation capabilities of directional surface covers and neotectonic surface displacements. In addition, if one can utilize the newly available multiple frequency polarimetric information, the new generation of space-borne SAR systems is the future research tool for Earth observation and global environmental change monitoring. The potential field strength decreases as a function of the inverse square of the distance between the source and the observation point and geophysicists have traditionally been reluctant to make the potential field observation from any space-borne platforms. However, there have recently been a number of potential field missions such as ASTRID-2, Orsted, CHAMP, GRACE, GOCE. Of course these satellite sensors are most effective for low spatial resolution applications. For similar objects, AMPERE and NPOESS are being planned by the United States and France. The Earth science disciplines which utilize space-borne platforms most are the astronomy and atmospheric science. However in this talk we will focus our discussion on the solid Earth and physical oceanographic applications. The geodynamic applications actively being investigated from various space-borne platforms geological mapping, earthquake and volcano .elated tectonic deformation, generation of p.ecise digital elevation model (DEM), development of multi-temporal differential cross-track SAR interferometry, sea surface wind measurement, tidal flat geomorphology, sea surface wave dynamics, internal waves and high latitude cryogenics including sea ice problems.

  • PDF