• Title/Summary/Keyword: internal recirculation

Search Result 103, Processing Time 0.023 seconds

Review of Experimental Studies on Swirling Flow in the Circular Tube using PIV Technique

  • Chang, Tae-Hyun;Nah, Do-Baek;Kim, Sang-Woo
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • The study of swirling flow is of technical and scientific interest because it has an internal recirculation field, and its tangential velocity is related to the curvature of streamline. The fluid flow for tubes and elbow of heat exchangers has been studied largely through experiments and numerical methods, but studies about swirling flow have been insufficient. Using the particle image velocimetry(PTV) method, this study found the time averaged velocity distribution with swirl and without swirl along longitude sections and the results appear to be physically reasonable. In addition, streamwise mean velocity distribution was compares with that of other. Furthermore, other experimental investigation was performed to study the characteristics of turbulent water flow in a horizontal circular tube by using liquid crystal. 2D PIV technique is employed for velocity measurement and liquid crystal is used for heat transfer experiments in water. Temperature visualization was made quantitatively by calibrating the colour of the liquid crystal versus temperature using various approaches.

Off-design Performance Prediction of Centrifugal Pumps by Using TEIS model and Two-zone model (TEIS 모델과 두 영역 모델을 이용한 원심 펌프의 탈 설계 성능 예측)

  • Yoon, In-Ho;Baek, Je-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.574-579
    • /
    • 2000
  • In this study. an off-design performance prediction program for centrifugal pumps is developed. To estimate the losses in an impeller flow passage, two-zone model and two-element in series(TEIS) model are used. At impeller exit. the mixing process occurs with an increase in entropy. In two-zone model. there are both primary zone and secondary zone for an isentropic core flow and an average of all non-isentropic streamtubes respectively. The level of the core flow diffusion in an impeller was calculated by using TEIS model. While internal losses in an impeller an automatically estimated by using the above models, some empirical correlations far estimating external losses. far example, disk friction loss, recirculation loss and leakage loss are used. In order to analyze the vaneless diffuser flow. the momentum equations for the radial and tangential directions are used and solved together with continuity and energy equations.

  • PDF

An Experimental study on swirl flow and combustion characteristics of 3 staged low NOx burner applied with FGR and FIR (FGR 및 FIR을 적용한 3단 저 NOx 버너의 Swirl유동 및 연소특성에 관한 실험적 연구)

  • Shin, Myung-Chul;Kim, Se-Won;Cha, Hak-Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.105-112
    • /
    • 2002
  • The objective of this research is to determine generally applicable design principles for the development of internally staged combustion devices. Utilizing a triple annulus combustor, air staged commercial propane flame configuration are studied. For this triple air staged combustor, the angular momentum weighted by it's swirl number and air distribution ratio was observed to be the critical criteria. An internal recirculation zone which develops on the centerline of the flame immediately downstream of the burner entraps the fuel into a fuel rich eddy. Then sufficient heat must he transferred from the flame via radiation to the chamber heat transfer surfaces, such that when the second air is introduced, peak flame temperatures are suppressed. It is experimentally found out that the total NOx emission level in this type of burner is lower than 0.75g/kg.

  • PDF

A Study on Characteristics of Mild Combustion using the Radiative Flamelet Model (비단열 화염편 모델을 이용한 Mild Combustor의 연소특성 해석)

  • Kim Gunhong;Kim Yongmo;Ahn Kookyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.60-67
    • /
    • 2005
  • Mild combustion or Flameless oxidation(FLOX) have been considered as one of the most prospective clean-combustion technologies to meet both the targets of high process efficiency and low pollutant emissions. A mild combustor with high air preheating and strong internal exhaust gas recirculation is characterized by relatively low flame temperature, low NOx emissions, no visible flame and no sound. In this study, the Steady Flamelet Approach has been applied to numerically analyze the combustion processes and NOx formation in the mild combustor. The detailed discussion has been made f3r the basic characteristics of mild combustor, numerical results and limitation of the present combustion modeling.

The Ascendancy of Grain Configuration on the Starting Transient of Solid Rockets

  • V.R. Sanal Kumar;Kim, Heuy-Dong;B.N. Raghunandan;Toshiaki Setoguchl
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.550-559
    • /
    • 2004
  • Theoretical studies have been carried out to examine the influence of the grain geometry-dependent driving forces, which control the internal flow pattern of solid rockets. Numerical studies have been executed with the help of a two-dimensional code. This code solves standard k-omega turbulence equations using the coupled second order implicit unsteady formulation. It has been concluded that the grain port divergence angles have significant leverage on the formation of recirculation bubbles leading for pressure oscillations, flow separation and reattachment. In solid rockets flow reattachment will favour secondary ignition and that will add to the complexity of the starting transient prediction.

  • PDF

Performance Characteristics Analysis of Gas Turbine-Pressurized SOFC Hybrid Systems (가스터빈-가압형 SOFC 하이브리드 시스템의 성능특성 해석)

  • 양원준;김동섭;김재환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.615-622
    • /
    • 2004
  • Recently, the hybrid system combining fuel cell and gas turbine has drawn much attention owing to its high efficiency and ultra low emission. It is now on the verge of world wide development and various system configurations have been proposed. A national project funded by Korean government has also been initiated to develop a pressurized hybrid system. This work aims at presenting design performance analysis for various possible system configurations as an initial step for the system development. Study focuses are given to major design options including the power ratio between gas turbine and fuel cell, reforming method (internal or external), reforming heat source (reforming burner, cathode hot air, fuel cell heat release) and steam supply method for reformer (anode gas recirculation, external steam generator). A wide variation in performance among different configurations has been predicted.

Analytical method to estimate cross-section stress profiles for reactor vessel nozzle corners under internal pressure

  • Oh, Changsik;Lee, Sangmin;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.401-413
    • /
    • 2022
  • This paper provides a simple method by which to estimate the cross-section stress profiles for nozzles designed according to ASME Code Section III. Further, this method validates the effectiveness of earlier work performed by the authors on standard nozzles. The method requires only the geometric information of the pressure vessel and the attached nozzle. A PWR direct vessel injection nozzle, a PWR outlet nozzle, a PWR inlet nozzle and a BWR recirculation outlet nozzle are selected based on their corresponding specific designs, e.g., a varying nozzle radius, a varying nozzle thickness and an outlet nozzle boss. A cross-section stress profile comparison shows that the estimates are in good agreement with the finite element analysis results. Differences in stress intensity factors calculated in accordance with ASME BPVC Section XI Appendix G are discussed. In addition, a change in the dimensions of an alternate nozzle design relative to the standard values is discussed, focusing on the stress concentration factors of the nozzle inside corner.

Exhaust Gas Recirculation System Applied to 56 kW Off-Road Vehicle to Satisfy the Tier 4 Interim Emission Regulation (Tier 4 Interim 배기규제 만족을 위한 56kW급 오프로드 차량 EGR 적용에 관한 연구)

  • Kang, Jeong-Ho;Han, Joon-Sup;Chung, Jae-Woo;Jeong, Gun-Woo;Cho, Gyu-Baek;Lim, Jung-Ho;Pyo, Su-Kang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.217-224
    • /
    • 2012
  • In general, transportation sources include both on-road vehicles and off-road equipment. Off-road vehicles have usually used diesel engines, which have the disadvantage of high NOx emission. Common rail direct injection (CRDI) and after-treatment systems have been applied to meet the exhaust gas emission regulations for diesel vehicles. In the present, agricultural machinery has satisfied the Tier 3 emission regulations by using waste gate turbocharger (WGT) and internal exhaust gas recirculation (EGR). In this paper, the combustion and emission characteristics of an EGR system applied to a 56kW off-road vehicle in non-road transient cycle (NRTC) mode have been investigated. The EGR map was made from foundation experiments determining the EGR duty for all engine operating conditions, and then this map was applied to the NRTC mode. Consequently, the NOx emission was reduced by the EGR system, and the Tier 4 interim emission regulations were satisfied by using both the EGR system and an after-treatment system.

Numerical Simulation and PIV Measurement on the Internal Flow in a Centrifugal Mini Pump at Low Flow Rate Conditions

  • Yuan, Hui-Jing;Shao, Jie;Cao, Guang-Jun;Liu, Shu-Hong;Wu, Yu-Lin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.775-780
    • /
    • 2008
  • This paper reports on the internal flow of a centrifugal mini pump working at the low flow rate operating conditions. The RNG $\kappa-\varepsilon$ turbulence model was employed to simulate the three-dimensional turbulent flow in the pump. To examine and certify the simulation results, a transparent acrylic centrifugal mini pump model which is suitable for PIV measurement has been developed. The tongue region and the passages region between blades were investigated using PIV. In order to eliminate the effect of refraction on the area closed to the wall and increase the measurement accuracy, the fluorescent particles were scatted into the working fluid with the tracing particles. It is found from the calculation and PIV measurement results that there is a large area of recirculation flow near the tongue at low flow rate operating conditions. The computationally predicted water head using the $\kappa-\varepsilon$ turbulence model at low flow rate operating conditions are in very good agreement with the experimentally measured water head and the mean velocity distributions at investigation area obtained by PIV and calculation showed a satisfactory agreement as well. Meanwhile, the results of PIV measurements show that the flow status in one passage is different to another. And for capturing the internal flow detail information, the $\kappa-\varepsilon$ turbulence model is not very suitable.

  • PDF

A study on enhancement of nitrogen removal efficiency on low concentration influent sewage (단계유입과 내부순환을 이용한 저농도 하수의 질소처리효율 향상을 위한 연구)

  • Choo, Tai-Ho;Kim, Tae-Ki;Ok, Chi-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.675-680
    • /
    • 2010
  • This study was investigated to complement nitrogen removal of low concentration influent municipal sewage. The following are the results of the effect of Internal Recircularion and Step Feed rates on Treatment efficiency at a BOD low concentration influent municipal sewage. Up to 90.0% of BOD, 87.8% of COD, 71.0% of T-N, 75.3% of T-P were removed on average at a low concentration influent. Whereas BOD and T-P were removed without any relations to Step Feed rates, T-N was influenced. Nitrogen removal efficiencies in 80% of Step Feed rates was 65%, which was caused by the lack of Carbon Source for denitrification. Nitrogen removal efficiency in 40% of Step Feed rates was 58%, which means it was not removed but dischared. Consequently, the efficiency was 73%, 80%, and 78% in 70%, 60% and 50% of Step Feed rates, which was concluded as the best range of Step Feed rates. Nitrogen removal efficiency increased under the condition of Internal Recircularion. At over 150% of Internal Recircularion rate, the efficiencies were not affected any more. It is believed that lots of Recircularion caused inflow of DO to anoxic tank. Therefore, the most appropriate Internal Recircularion rate can be concluded as 50~150%.