• Title/Summary/Keyword: internal damping

검색결과 198건 처리시간 0.033초

분포 내부 감쇠 모형에 따른 회전체 계 동특성 비교 연구 (A Comparison of Dynamics of Rotor Systems for Different Internal Damping Models)

  • 박종혁;전봉석;강중옥;홍성욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.838-843
    • /
    • 2001
  • Internal damping plays an important role in some rotor dynamic systems with the use of various materials for shafts, for example, composite material. However, although the effects of internal damping have been investigated for a couple of decades, there are several different internal damping models in use, none of which are accepted as the most reliable model. The purpose of this paper is to compare the results of dynamic analysis of rotor systems with several different internal damping models. The exact dynamic element method is used to formulate and analyze the problem. The simulation results provided in this paper may be useful for the dynamic analysis of high rotor systems subject to significant internal damping.

  • PDF

내부감쇠가 있는 축비대칭 구동축의 안정성 해석 (Stability Analysis of an Asymmetric Shaft with Internal Damping)

  • 신응수
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.8-14
    • /
    • 2013
  • This paper intends to provide the whirling characteristics of an asymmetric rotor-shaft system with a non-ideal DC motor. The equations of motion have been derived in terms of system parameters such as the internal/external damping, the asymmetry and the motor voltage. By imposing the conditions that the motor input power should be balanced by the dissipated power, steadystate whirling characteristics are obtained such as the whirling amplitude, the whirling frequency and the stability diagrams. Results show that the whirling stability is affected by the internal/external damping and the asymmetry as well as the motor voltage. Also, the whirling amplitude at the steadystate is increased and the motor speed is lowered as the internal damping becomes higher or the external damping is reduced. In addition, the asymmetry causes the variation of the whirling orbit, which becomes splitted into two distinct trajectories. Finally, non-ideal characteristics of the DC motor is found to reduce the whirling motion in case of steadystate whirling with high asymmetry and high internal damping.

Effects of internal damping on the bending vibration characteristics of composite drive shaft

  • Mo Yang;Haonan Hu;Xian Zhou;Wen Zhang;Yuebin Zhou;Yikun Wang;Jianmin Ye
    • Steel and Composite Structures
    • /
    • 제52권6호
    • /
    • pp.663-672
    • /
    • 2024
  • This paper researched on the bending vibration characteristics of composite drive shaft with internal damping. To analyze the unbalanced excitation response in full speed range, a transfer matrix model was built based on the improved Layer-wise theory and the numerical damping, and compared with the metal drive shaft. The results show that the effect of internal damping of the composite shaft tube on bending vibration response was different in the subcritical, critical and supercritical speed ranges. Then, the finite element analysis and vibration tests were carried out to verify the analysis results of transfer matrix model.

내부감쇠가 건성마찰력을 받는 공작기계의 안정성에 미치는 효과 (The Effect of an Internal Damping on the Stability of Machine Tool Engineers Subjected to Dry Friction Force)

  • 고준빈
    • 한국공작기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.112-119
    • /
    • 2004
  • This paper discussed on the effect of an internal damping on the stability of an elastic material subjected to dry friction force. Dry friction forces act tangentially at the contact surface between a moving belt and elastic material. The elastic material on a belt moving is modeled for simplicity into a cantilevered beam subjected to distributed follower force. In the analysis, the discretized equations derived according to finite element method are used. The impulse response of the beam are studied by the mode superposition method to observe the growth rate of the motion. It is found that the internal damping in cantilevered beam subjected to distributed follower force may act destabilizing.

축비대칭 회전계에서 나타나는 Sommerfeld 현상 (Sommerfeld Phenomena of an Asymmetric Rotor)

  • 신응수
    • 한국생산제조학회지
    • /
    • 제23권1호
    • /
    • pp.56-63
    • /
    • 2014
  • This paper provides a comprehensive study on the Sommerfeld phenomena in an asymmetric rotor with a nonideal power supply. An analytical approach is employed by deriving the equations of motion in a nondimensional form. The system parameters, including the asymmetry, external and internal damping, and motor power, are chosen to find their effects on the characteristics of the Sommerfeld phenomena and critical behavior around resonance. Results show that the rotor asymmetry suppresses the Sommerfeld phenomena and helps pass through resonance if the asymmetry is small. However, it is observed that the opposite effects exist in case of a large asymmetry. It is also found that the effects of external damping on the Sommerfeld phenomena are similar to those of the asymmetry, whereas internal damping has less effects than external damping and the asymmetry. By performing numerical simulations, four types of critical behavior are identified from the viewpoints of the stability and the passage through resonance.

전통악기 음향판의 양면도장이 음향성에 미치는 영향 (Effects of Double Surfaces Finishing on Acoustical Properties of Soundboard for Traditional Musical Instruments)

  • 정희석;유태경;권주용
    • Journal of the Korean Wood Science and Technology
    • /
    • 제26권4호
    • /
    • pp.26-33
    • /
    • 1998
  • Acoustical properties of chestnut and paulownia woods have been determined in four film thicknesses of oriental lacquering and cashew varnishing on double surfaces of soundboard to elucidate effects of finishing. Accelerometer was attached to the specimen at one third position from one end, and specimen was hit by the impact hammer at one third position from opposite end. Data were processed by vibration analyzer. The ratio of axial-to-transverse sound velocity of untreated specimens of chestnut and paulownia were 3.25 and 5.34, respectively. Natural frequency, specific Young's modulus, acoustical coefficient, sound velocity, damping of sound radiation(DSR) and acoustical converting efficiency(ACE) decreased by oriental lacquering and cashew varnishing for both species. Damping of internal friction of chestnut decreased by oriental lacquering and cashew varnishing, but that of paulownia increased. Natural frequency. specific Young's modulus, acoustical coefficient, sound velocity, and DSR decreased with increased film thickness of both finishing materials. However, damping of internal friction and ACE showed irregular tendency with increased film thickness. Acoustical properties of cashew varnished chestnut specimen were better than those of oriental lacquered specimen. Acoustical properties of oriental lacquered paulownia specimen were better than those of cashew varnished specimen.

  • PDF

적층 복합재료의 내부감쇠와 복소탄성계수 측정에 관한 연구 (Experimental Determination of Complex Moduli and Internal Damping of Laminated Composites)

  • 이재혁;박세만;김형삼
    • 한국재료학회지
    • /
    • 제8권10호
    • /
    • pp.905-911
    • /
    • 1998
  • 감쇠란 주기적인 변형하에 에너지를 소산시킬 수 있는 시스템이나 재료의성질을 말하며, 이로서 공진에서 진폭을 감소시키며 아울러 전달하는 파의 빠른 감소를 유발한다. 이것은 진동을 일으키는 응력을 감소시키게 되는데 결국은 피고 수명을 연장시키는 결과를 가져오게 된다. 본 연구에서는 적층된 복합재료의 내부감쇠와 복소탄성 계수를 실험적으로 측정하였다. 실험은 충격 기법을 사용하였으며 비교적 간단한 모델러서 외팔보의 휨진동을 측정하였다. 복소 탄성계수는 공진법을 이용하여 공진주파수를 측정 storage modulus를 계산하고 이를 통해 loss modulus를 구한 다음 계산하였고, 내부감쇠는 bandwidth technique과 전달함수의 실부부분 이용방법에 의해 각각 구하였다.

  • PDF

Dynamic Strain Gage를 이용한 제진합금의 제진특성 측정 (Damping Property Measurement of Damping Alloy by Dynamic Strain Gage)

  • 이규환;조권구;이봉직;심명철
    • 한국재료학회지
    • /
    • 제4권5호
    • /
    • pp.502-509
    • /
    • 1994
  • dynamic strain gage와 12bit AD(analog to digital converter)를 이용한 새로운 제진특성 측정 장치를 제작하였다. 이 장치를 이용하여 일반재료와 고제진재료의 제진특성을 연구하였다. 또한 열처리 조건, 초기 진동 진폭, 그리고 내부응력의 변화에 따른 SDC(specific damping capacity)변화에 관하여 연구하였다. 일반재료와 제진재료의 비교에서, 제진재료는 진동을 가한 후 0.4초 이내에 진동 진폭이 거의 사라졌지만, 같은 시간에 일반재료의 진동 진폭은 거의 감소하지 않았다. Fe-16wt. %Cr계 합금의 제진 특성은 노냉일 때 SDC max 가 40%이상이었고, Fe-5.5wt.%Ai합금의 제진 특성은 공냉일 때 SDC max값이 30%이상이었다. 초기 진동 진폭이 증가할수록 최대 제진 특성치는 낮은 진동 진폭 영역으로 이동하였다. 제진 특성은 내부 응력이 증가할수록 급격한 감소를 보였으며, 본 연구에서 개발한 제진측정 장치는 낮은 진동 진폭의 영역에서 정확한 제진 특성 측정이 가능하였다.

  • PDF

고속 구동축의 지지부강성이 안정성에 미치는 영향 (Effects of Foundation Stiffness on the Stability of Supercritical Driveshafts)

  • 신응수;김태광
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.603-607
    • /
    • 2008
  • This paper is to investigate the effects of support conditions on the whirling stability of a supercritical composite driveshaft. Two system parameters are rigorously considered: one is the bending stiffness of the support beam/bearings and the other is the rotating internal damping of the shaft. An analytic model is developed based on finite element methods and an eigenvalue analysis is employed to estimate the shaft stability under supercritical operating conditions. Results show that the internal damping causes the whirling instability at a supercritical speed, as demonstrated in other previous studies. However, the bending stiffness of the support beam is found to affect greatly the stability behaviors of a supercritical shaft and several combinations of the shaft/beam stiffness can be identified to guarantee the stable operation even in a supercritical region.

  • PDF

토크 하중의 변동이 회전원판의 안정성에 미치는 영향 (Influence of Torque Fluctuation on the Stability of a Rotating Disk)

  • 신응수
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.110-116
    • /
    • 2015
  • This study investigates the whirling stability of a rotating shaft-disk system under parametric excitation using periodically varying torque. The equations of motion were derived using a lumped-mass model, and the Floquet method was employed to find the effects of torque fluctuation, internal and external damping, and rotational speed on whirling stability. Results indicated that the effect of torque fluctuation was considerable on the instability around resonance, but minimal on supercritical instability. Stability diagrams were sensitive to the parametric excitation frequency; critical torque decreased upon increasing excitation frequency, with faster response convergence or divergence. In addition, internal and external damping had a considerable effect on unstable regions, and reduced the effects of the parametric excitation frequency on critical torque and speed. Results obtained from the Floquet approach were in good agreement with those obtained by numerical integration, except for some cases with Floquet multipliers very close to unity.