• Title/Summary/Keyword: internal cleavage

Search Result 86, Processing Time 0.025 seconds

Treatment with a Small Synthetic Compound, KMU-193, induces Apoptosis in A549 Human Lung Carcinoma Cells through p53 Up-Regulation

  • Choi, Eun Young;Shin, Kyeong-Cheol;Lee, Jinho;Kwon, Taeg Kyu;Kim, Shin;Park, Jong-Wook
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5883-5887
    • /
    • 2015
  • Despite recent advances in therapeutic strategies for lung cancer, mortality still is increasing. In the present study, we investigated the anti-cancer effects of KMU-193, 2-(4-Ethoxy-phenyl)-N-{5-[2-fluoro-4-(4-methylpiperazine-1-carbonyl)-phenylamino]-1H-indazol-3-yl}-acetamide in a human non-small cell lung cancer cell line A549. KMU-193 strongly inhibited the proliferation of A549 cells, but it did not have anti-proliferative effect in other types of cancer cell lines. KMU-193 further induced apoptosis in association with activation of caspase-3 and cleavage of PLC-${\gamma}1$. However, KMU-193 had no apoptotic effect in untransformed cells such as TMCK-1 and BEAS-2B. Interestingly, pretreatment with z-VAD-fmk, a pan-caspase inhibitor, strongly abrogated KMU-193-induced apoptosis. KMU-193 treatment enhanced the expression levels of p53 and PUMA. Importantly, p53 siRNA transfection attenuated KMU-193-induced apoptosis. Collectively, these results for the first time demonstrate that KMU-193 has strong apoptotic effects on A549 cells and these are largely mediated through caspase-3- and p53-dependent pathways.

Protective Effects of Phenolic-rich Fraction(PRF) from Fructus Schisandrae on $H_2O_2-induced$ Apoptosis of SH-SY5Y Cells

  • Son, In-Hwan;Lee, Key-Sang
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.2
    • /
    • pp.230-241
    • /
    • 2007
  • Objective : This study was intended to ascertain the protective effect of phenolic-rich fraction (PRF) from Fructus Schisandrae on SH-SY5Y cells. Methods : PRF was obtained from the 80% ethanol extract of Fructus Schisandrae by Sepabeads SP-850 column chromatography. The neuroprotective effect of the FS PRS was investigated due to the hydrogen peroxide $(H_2O_2)-induced$ apoptosis of cultured SH-SY5Y cells. Results : Cell viability assays revealed that pretreating SH-SY5Y cells with PRF (10-200 ${\mu}g/mL$) resulted in significant dose-dependent protection against $H_2O_2-induced$ cell death. The effect was assessed by flow cytometric analysis of DNA contents using propidium iodide (PI) staining. The population of apoptotic cells was increased by 32.89% in only $H_2O_2$ (150 ${\mu}M$)-treated environment, but it was reduced by pre-treatment of FS PRF (200 ${\mu}g/mL$) to 21.61%. $H_2O_2-induced$ caspase-3 activation and PARP cleavage were reduced in FS PRF pre-treated cells, and PRF led to an apparent suppressive effect on the oxidative stress induced by reactive oxygen species (ROS). Conculsion : This study showed that Fructus Schisandrae should be useful for the treatment prevention of neurodegenerative diseases associated with elevated ROS levels.

  • PDF

A New Signal Sequence for Recombinant Protein Secretion in Pichia pastoris

  • Govindappa, Nagaraj;Hanumanthappa, Manjunatha;Venkatarangaiah, Krishna;Periyasamy, Sankar;Sreenivas, Suma;Soni, Rajeev;Sastry, Kedarnath
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.337-345
    • /
    • 2014
  • Pichia pastoris is one of the most widely used expression systems for the secretory expression of recombinant proteins. The secretory expression in P. pastoris usually makes use of the prepro $MAT{\alpha}$ sequence from Saccharomyces cerevisiae, which has a dibasic amino acid cleavage site at the end of the signal sequence. This is efficiently processed by Kex2 protease, resulting in the secretion of high levels of proteins to the medium. However, the proteins that are having the internal accessible dibasic amino acids such as KR and RR in the coding region cannot be expressed using this signal sequence, as the protein will be fragmented. We have identified a new signal sequence of 18 amino acids from a P. pastoris protein that can secrete proteins to the medium efficiently. The PMT1-gene-inactivated P. pastoris strain secretes a ~30 kDa protein into the extracellular medium. We have identified this protein by determining its N-terminal amino acid sequence. The protein secreted has four DDDK concatameric internal repeats. This protein was not secreted in the wild-type P. pastoris under normal culture conditions. We show that the 18-amino-acid signal peptide at the N-terminal of this protein is useful for secretion of heterologous proteins in Pichia.

Study of The Apoptotic Mechanisms of Gunbibosinhangam-tang on Human Neuroblastoma Cell Line BE2 (Human Neuroblastoma Cell Line BE2에 대한 건비보신항암탕(健脾補腎抗癌湯)의 세포고사 기전 연구)

  • Cho, Young-Kee;Moon, Mi-Hyun;Lee, Seong-Kyun;Jeong, Hyun-Ae;Lee, Jung-Sub;Nam, Sang-Kyu;Moon, Goo;Shin, Sun-Ho;Kim, Dong-Woung
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.3
    • /
    • pp.725-736
    • /
    • 2006
  • Objective: In order to investigate cell death mechanisms by Gunbibosinhangam-Tang(G.B.H) in cancer cells, the activities of apoptosis signaling pathway were tested in human neuroblastoma cell line BE2. Methods: Viability of BE2 cells was markedly decreased by treatment of the water extract of G.B.H in a dose-dependent manner. G.B.H-induced cell death was confirmed as apoptosis characterized by chromatin condensation, We tested whether the water extract of G.B.H affects the anti-apoptotic proteins such as Bcl-$X_L$ Results: Bcl-$X_L$ was uneffected by the addition of the water extract of G.B.H in a time-dependent manner. Cleavage of PARP(poly-ADP-ribose polymerase) by activation of caspase-8 protease was also observed in BE2 cells by the treatment of the water extract of G.B.H. Conclusion: These results suggest that the water extract of G.B.H exerts anti-cancer effects on human neuroblastoma BE2 cells by inducing the apoptotic death via activation of intrinsic caspase cascades.

  • PDF

Use of Restriction Fragment Length Polymorphism Analysis to Differentiate Fungal Strains in Sunchang Meju

  • Jung, Jong-Hyun;Seo, Dong-Ho;Bhoo, Sung-Hee;Ha, Suk-Jin;Kim, Jong-Sang;Kim, Jeong-Hwan;Kwon, Dae-Young;Cha, Jae-Ho;Park, Cheon-Seok
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.888-891
    • /
    • 2008
  • Twenty-three fungal strains were isolated from meju that had originated from the Sunchang province, the famous location for making fermented soybean foods in Korea. The restriction fragment length polymorphism (RFLP) of the internal transcribed spacer (ITS) region of the rDNA (ITS-RFLP) was applied to differentiate the isolated fungal strains. First, the ITS region by polymerase chain reaction (PCR) with specific primers was amplified and then cleaved the products with different restriction enzymes. Cleavage of the amplified fragments with the restriction enzymes AluI, HaeIII, HhaI, and TaqI revealed extensive polymorphisms. The ITS-RFLP results highly correlated with ITS sequence analysis. All of the 23 fungal strains were classified into 5 groups by ITS-RFLP analysis. Aspergillus oryzae was the major fungal strain isolated from Sunchang meju (12 out of 23), while Aspergillus fumigatus was the next most frequently isolated strain (7 out of 23). In contrast, it was found that Fusarium asiaticum, Aspergillus sydowii, and Arthrinium sp. were the minor fungal strains in meju.

Mechanism of Environmentally-Induced Stress Corrosion Cracking of Zr-Alloys

  • Park, Sang Yoon;Kim, Jun Hwan;Choi, Byung Kwon;Jeong, Yong Hwan
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.170-176
    • /
    • 2007
  • Iodine-induced stress corrosion cracking (ISCC) properties and the associated ISCC process of Zircaloy-4 and an Nb-containing advanced nuclear fuel cladding were evaluated. An internal pressurization test with a pre-cracked specimen was performed with a stress-relieved (SR) or recrystallized (RX) microstructure at $350^{\circ}C$, in an iodine environment. The results showed that the $K_{ISCC}$ of the SR and RX Zircaloy-4 claddings were 3.3 and 4.8MPa\;m^{0.5}, respectively. And the crack propagation rate of the RX Zircaloy-4 was 10 times lower than that of the SR one. The chemical effect of iodine on the crack propagation rate was very high, which was increased $10^4$ times by iodine addition. Main factor affecting on the micro-crack nucleation was a pitting formation and its agglomeration along the grain boundary. However, this pitting formation on the grain-boundary was suppressed in the case of an Nb addition, which resulted in an increase of the ISCC resistance when compared to Zircaloy-4. Crack initiation and propagation mechanisms of fuel claddings were proposed by a grain boundary pitting model and a pitting assisted slip cleavage model and they showed reasonable results.

Technologies for the Removal of Water Hardness and Scaling Prevention

  • Ahn, Min Kyung;Han, Choon
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.73-79
    • /
    • 2017
  • In nucleation assisted crystallization process formed $CO_2$ leaves as colloid gas and is used as the template by the rapidly growing crystals in the nucleation site. This emulsion of $CaCO_3$ micro-crystals & $CO_2$ micro-bubbles forms hollow particles. Formed hollow particles are double walled, both internal and external faces belonging to the cleavage aragonites which separate the surrounding water from the enclosed gas cavity. Hence, the reverse reaction of $CO_2$ with water forming Carbonic Acid is not possible and the pH stability is maintained. In fact every excess $CaCO_3$ crystals are buffering any carbonic acid left over. This $CO_2$ based nucleation technology prevents scale formation in water channels, but it also helps to reduce the previously formed scales. This process takes out water dissolved $CO_2$ in almost-visible micro-bubbles forms that helps reducing previously formed scale over a period of time (depends on the usage period). The aragonite crystals can't form scale because of its stable molecular structure and neutral surface electro potentiality.

Isolation, Characterization, and Application of Chitosan-Degrading Fungus from Soil

  • Wei, Xinlin;Chen, Wei;Xiao, Ming;Xiao, Jianbo;Wang, Yuanfeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1114-1120
    • /
    • 2010
  • A chitosan-degrading fungus, BSF114, was isolated from soil. The culture preparation showed strong chitosanolytic enzyme activity at an optimum pH of 4.0 and optimum temperature of $60^{\circ}C$ after 36-40 h fermentation. The rapid decrease in the viscosity of the chitosan solution early in the reaction suggested an endo-type cleavage of the polymeric chitosan chains. To identify the isolated fungus, molecular biological and morphological methods were used. The fungal internal transcribed spacer (ITS) region 1 was amplified, sequenced, and then compared with related sequences in the GenBank database using BLAST. The phylogenetic relationships were then analyzed, and the results showed that the fungus belongs to Aspergillus fumigatus. Morphological observations were also used to confirm the above conclusion. The chitooligosaccharides (COS) obtained through hydrolyzing the colloidal chitosan showed that A. fumigatus BSF114 is suitable for degrading chitosan and producing chitooligosaccharides on a large scale. High concentrations of the COS (1,000 and 500 ${\mu}g/ml$) significantly proliferated mice marrow cells.

Regulation of Phenol Metabolism in Ralstonia eutropha JMP134

  • Kim Youngjun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.27-30
    • /
    • 2002
  • Ralstonia eutrupha JMP134 is a well-known soil bacterium which can metabolite diverse aromatic compounds and xenobiotics, such as phenol, 2,4-dichlorophenoxy acetic acid (2, 4-D), and trichloroethylene (TCE), etc. Phenol is degraded through chromosomally encoded phenol degradation pathway. Phenol is first metabolized into catechol by a multicomponent phenol hydroxylase, which is further metabolized to TCA cycle intermediates via a meta-cleavage pathway. The nucleotide sequences of the genes for the phenol hydroxylase have previously been determined, and found to composed of eight genes phlKLMNOPRX in an operon structure. The phlR, whose gene product is a NtrC-like transcriptional activator, was found to be located at the internal region of the structural genes, which is not the case in most bacteria where the regulatory genes lie near the structural genes. In addition to this regulatory gene, we found other regulatory genes, the phlA and phlR2, downstream of the phlX. These genes were found to be overlapped and hence likely to be co-transcribed. The protein similarity analysis has revealed that the PhlA belongs to the GntR family, which are known to be negative regulators, whereas the PhlR2 shares high homology with the NtrC-type family of transcriptional activators like the PhlR. Disruption of the phlA by insertional mutation has led to the constitutive expression of the activity of phenol hydroxylase in JMP134, indicating that PhlA is a negative regulator. Possible regulatory mechanisms of phenol metabolism in R. eutropha JMP134 has been discussed.

  • PDF

Effects of TiN Coating on the Fatigue Fracture of Dental Implant System with Various Cyclic Loads

  • Jung, Da-Un;Chung, Chae-Heon;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.283-291
    • /
    • 2015
  • The purpose of this study was to investigate effects of TiN coating on the fatigue fracture of dental implant system with various cyclic loads. TiN coated abutment screw, the fixture, and abutment of internal hex type were prepared for fatigue test. The fatigue test was carried out according to ISO 14801:2003(E) using tensile and compression tester with repeated load from 30% to 80% of static fracture force. Morphology and fractured surface was observed by field emission scanning electron microscope(FE-SEM) and energy dispersive X-ray spectroscope(EDS). The fracture cycle drastically decreased as repeated load increased. Especially, in the case of TiN-coated abutment screw, fracture cycle increased compared to non-coated abutment screw. The fatigue crack was propagated fast as repeated load increased. The plastic deformation region decreased, whereas, cleavage fracture region increased as repeated load increased.