• Title/Summary/Keyword: internal buffer size reduction

Search Result 5, Processing Time 0.025 seconds

Pipelined Macroblock Processing to Reduce Internal Buffer Size of Motion Estimation in Multimedia SoCs

  • Lee, Seong-Soo
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.297-304
    • /
    • 2003
  • A multimedia SoC often requires a large internal buffer, because it must store the whole search window to reduce the huge I/O bandwidth of motion estimation. However, the silicon area of the internal buffer increases tremendously as the search range becomes larger. This paper proposes a new method that greatly reduces the internal buffer size of a multimedia SoC while the computational cost, I/O bandwidth, and image quality do not change. In the proposed method, only the overlapped parts of search windows for consecutive macroblocks are stored in the internal buffer. The proposed method reduces the internal buffer. The proposed method reduces the internal buffer size to 1/5.0 and 1/8.8 when the search range is ${\pm}64{\times}{\pm}$64 and ${\pm}128{\times}{\pm}$128, respectively.

  • PDF

A novel hardware design for SIFT generation with reduced memory requirement

  • Kim, Eung Sup;Lee, Hyuk-Jae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.157-169
    • /
    • 2013
  • Scale Invariant Feature Transform (SIFT) generates image features widely used to match objects in different images. Previous work on hardware-based SIFT implementation requires excessive internal memory and hardware logic [1]. In this paper, a new hardware organization is proposed to implement SIFT with less memory and hardware cost than the previous work. To this end, a parallel Gaussian filter bank is adopted to eliminate the buffers that store intermediate results because parallel operations allow all intermediate results available at the same time. Furthermore, the processing order is changed from the raster-scan order to the block-by-block order so that the line buffer size storing the source image is also reduced. These techniques trade the reduction of memory size with a slight increase of the execution time and external memory bandwidth. As a result, the memory size is reduced by 94.4%. The proposed hardware for SIFT implementation includes the Descriptor generation block, which is omitted in the previous work [1]. The addition of the hardwired descriptor generation improves the computation speed by about 30 times when compared with the previous work.

VLSI Design of a 2048 Point FFT/IFFT by Sequential Data Processing for Digital Audio Broadcasting System (순차적 데이터 처리방식을 이용한 디지틀 오디오 방송용 2048 Point FFT/IFFT의 VLSI 설계)

  • Choe, Jun-Rim
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.5
    • /
    • pp.65-73
    • /
    • 2002
  • In this paper, we propose and verify an implementation method for a single-chip 2048 complex point FFT/IFFT in terms of sequential data processing. For the sequential processing of 2048 complex data, buffers to store the input data are necessary. Therefore, DRAM-like pipelined commutator architecture is used as a buffer. The proposed structure brings about the 60% chip size reduction compared with conventional approach by using this design method. The 16-point FFT is a basic building block of the entire FFT chip, and the 2048-point FFT consists of the cascaded blocks with five stages of radix-4 and one stage of radix-2. Since each stage requires rounding of the resulting bits while maintaining the proper S/N ratio, the convergent block floating point (CBFP) algorithm is used for the effective internal bit rounding and their method contributed to a single chip design of digital audio broadcasting system.

Full validation of high-throughput bioanalytical method for the new drug in plasma by LC-MS/MS and its applicability to toxicokinetic analysis

  • Han, Sang-Beom
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.65-74
    • /
    • 2006
  • Modem drug discovery requires rapid pharmacokinetic evaluation of chemically diverse compounds for early candidate selection. This demands the development of analytical methods that offer high-throughput of samples. Naturally, liquid chromatography / tandem mass spectrometry (LC-MS/MS) is choice of the analytical method because of its superior sensitivity and selectivity. As a result of the short analysis time(typically 3-5min) by LC-MS/MS, sample preparation has become the rate- determining step in the whole analytical cycle. Consequently tremendous efforts are being made to speed up and automate this step. In a typical automated 96-well SPE(solid-phase extraction) procedure, plasma samples are transferred to the 96-well SPE plate, internal standard and aqueous buffer solutions are added and then vacuum is applied using the robotic liquid handling system. It takes only 20-90 min to process 96 samples by automated SPE and the analyst is physically occupied for only approximately 10 min. Recently, the ultra-high flow rate liquid chromatography (turbulent-flow chromatography)has sparked a huge interest for rapid and direct quantitation of drugs in plasma. There is no sample preparation except for sample aliquotting, internal standard addition and centrifugation. This type of analysis is achieved by using a small diameter column with a large particle size(30-5O ${\mu}$m) and a high flow rate, typically between 3-5 ml/min. Silica-based monolithic HPLC columns contain a novel chromatographic support in which the traditional particulate packing has been replaced with a single, continuous network (monolith) of pcrous silica. The main advantage of such a network is decreased backpressure due to macropores (2 ${\mu}$m) throughout the network. This allows high flow rates, and hence fast analyses that are unattainable with traditional particulate columns. The reduction of particle diameter in HPLC results in increased column efficiency. use of small particles (<2 urn), however, requires p.essu.es beyond the traditional 6,000 psi of conventional pumping devices. Instrumental development in recent years has resulted in pumping devices capable of handling the requirements of columns packed with small particles. The staggered parallel HPLC system consists of four fully independent binary HPLC pumps, a modified auto sampler, and a series of switching and selector valves all controlled by a single computer program. The system improves sample throughput without sacrificing chromatographic separation or data quality. Sample throughput can be increased nearly four-fold without requiring significant changes in current analytical procedures. The process of Bioanalytical Method Validation is required by the FDA to assess and verify the performance of a chronlatographic method prior to its application in sample analysis. The validation should address the selectivity, linearity, accuracy, precision and stability of the method. This presentation will provide all overview of the work required to accomplish a full validation and show how a chromatographic method is suitable for toxirokinetic sample analysis. A liquid chromatography/tandem mass spectrometry (LC-MS/MS) method developed to quantitate drug levels in dog plasma will be used as an example of tile process.

  • PDF

Phosphate Concentration Dependent Degradation of Biofilm in S. aureus Triggered by Physical Properties (인산염 농도에 따른 물성 변화로 발생하는 황색포도상구균 바이오필름 제거 현상)

  • Song, Sang-Hun;Hwang, Byung Woo;Son, Seong Kil;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.4
    • /
    • pp.361-368
    • /
    • 2021
  • The objective of this study was to establish technology for removing bacteria with human- and eco-friendly material. Staphylococcus aureus as an important component for balanced equilibrium among microbiomes, was cultured under various concentrations of phosphate. Experimental observation relating to physical properties was performed in an addition of phosphate buffer. Statistically minimum value of size and hardness using atomic force microscope was observed on the matured biofilm at 5 mM concentration of phosphate. As a result of absorbance for the biofilm tagged with dye, concentration of biofilm was reduced with phophate, too. To identify whether this reduction by phosphate at the 5 mM is caused by counter ion or not, sodium chloride was treated to the biofilm under the same condition. To elucidate components of the biofilm counting analysis of the biofilm using time-of-flight secondary ion mass spectrometry was employed. The secondary ions from the biofilm revealed that alteration of physical properties is consistent to the change of extracellular polymeric substrate (EPS) for the biofilm. Viscoelastic characterization of the biofilm using a controlled shear stress rheometer, where internal change of physical properties could be detected, exhibited a static viscosity and a reduction of elastic modulus at the 5 mM concentration of phosphate. Accordingly, bacteria at the 5 mM concentration of phosphate are attributed to removing the EPS through a reduction of elastic modulus for bacteria. We suggest that the reduction of concentration of biofilm induces dispersion which assists to easily spread its dormitory. In conclusion, it is elucidated that an addition of phosphate causes removal of EPS, and that causes a function of antibiotic.